Molecular Mechanisms of DNA Damage Response and Epigenetic Regulation in Cold-Adapted Species: Implications for Genome Stability and Molecular Network Perspective
Abstract
1. Introduction
1.1. Cold-Adapted Species
1.2. DNA Damage in Cold Stress
2. DNA Damage Response
2.1. Histone Modifications
2.2. Molecular Network Analysis
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Storey, K.B.; Storey, J.M. Freeze Tolerance in Animals. Physiol. Rev. 1988, 68, 27–84. [Google Scholar] [CrossRef] [PubMed]
- Storey, K.B.; Storey, J.M. Molecular Physiology of Freeze Tolerance in Vertebrates. Physiol. Rev. 2017, 97, 623–665. [Google Scholar] [CrossRef]
- Wang, H.; Yin, C.; Zhang, G.; Yang, M.; Zhu, B.; Jiang, J.; Zeng, Z. Cold-Induced Deposition of Bivalent H3K4me3-H3K27me3 Modification and Nucleosome Depletion in Arabidopsis. Plant J. 2024, 118, 549–564. [Google Scholar] [CrossRef]
- Wang, F.; Li, C.H.; Liu, Y.; He, L.F.; Li, P.; Guo, J.X.; Zhang, N.; Zhao, B.; Guo, Y.D. Plant Responses to Abiotic Stress Regulated by Histone Acetylation. Front. Plant Sci. 2024, 15, 1404977. [Google Scholar] [CrossRef]
- Bredow, M.; Walker, V.K. Ice-Binding Proteins in Plants. Front. Plant Sci. 2017, 8, 2153. [Google Scholar] [CrossRef]
- Murray, K.A.; Gibson, M.I. Chemical Approaches to Cryopreservation. Nat. Rev. Chem. 2022, 6, 579–593. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Storey, K.B. Regulation of Antioxidant Systems in Response to Anoxia and Reoxygenation in Rana Sylvatica. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2020, 243–244, 110436. [Google Scholar] [CrossRef] [PubMed]
- Lung, Z.D.; Storey, K.B. DNA Damage and Repair Responses to Freezing and Anoxia Stresses in Wood Frogs, Rana Sylvatica. J. Therm. Biol. 2022, 107, 103274. [Google Scholar] [CrossRef]
- Mazumder, A.; Roopa, T.; Basu, A.; Mahadevan, L.; Shivashankar, G.V. Dynamics of Chromatin Decondensation Reveals the Structural Integrity of a Mechanically Prestressed Nucleus. Biophys. J. 2008, 95, 3028–3035. [Google Scholar] [CrossRef] [PubMed]
- Costanzo, J.P.; Lee, R.E. Avoidance and Tolerance of Freezing in Ectothermic Vertebrates. J. Exp. Biol. 2013, 216, 1961–1967. [Google Scholar] [CrossRef]
- Bloskie, T.; Taiwo, O.O.; Storey, K.B. Reversible Histone Modifications Contribute to the Frozen and Thawed Recovery States of Wood Frog Brains. Biomolecules 2024, 14, 839. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Zhang, W.; Marand, A.P.; Zhu, B.; Buell, C.R.; Jiang, J. Cold Stress Induces Enhanced Chromatin Accessibility and Bivalent Histone Modifications H3K4me3 and H3K27me3 of Active Genes in Potato. Genome Biol. 2019, 20, 123. [Google Scholar] [CrossRef]
- Hawkins, L.J.; Storey, K.B. Histone Methylation in the Freeze-Tolerant Wood Frog (Rana Sylvatica). J. Comp. Physiol. B 2018, 188, 113–125. [Google Scholar] [CrossRef]
- Taiwo, O.O.; Storey, K.B. Histone Arginine Methylation in the Kidneys of Rana Sylvatica During Freeze–Thaw Cycle. Kinases Phosphatases 2025, 3, 1. [Google Scholar] [CrossRef]
- Taiwo, O.O.; Breedon, S.A.; Storey, K.B. Epigenetic Regulation by Histone Methylation and Demethylation in Freeze-Tolerant Frog Kidney. Cell Biochem. Funct. 2024, 42, e70036. [Google Scholar] [CrossRef]
- Tessier, S.N.; Luu, B.E.; Smith, J.C.; Storey, K.B. The Role of Global Histone Post-Translational Modifications during Mammalian Hibernation. Cryobiology 2017, 75, 28–36. [Google Scholar] [CrossRef]
- Luijsterburg, M.S.; Van Attikum, H. Chromatin and the DNA Damage Response: The Cancer Connection. Mol. Oncol. 2011, 5, 349–367. [Google Scholar] [CrossRef]
- Polo, S.E.; Jackson, S.P. Dynamics of DNA Damage Response Proteins at DNA Breaks: A Focus on Protein Modifications. Genes Dev. 2011, 25, 409–433. [Google Scholar] [CrossRef]
- Zhan, X.; Li, Z.; Pang, M.; Yao, G.; Mao, B. Comprehensive Omics Analysis Reveals Cold-Induced Metabolic Reprogramming and Alternative Splicing in Dendrobium Officinale. Plants 2025, 14, 412. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Lin, Y.; Luo, Y.; Wang, X.; Chen, Q.; Sun, B.; Wang, Y.; Li, M.; Tang, H. A Transcriptomic Analysis Reveals Diverse Regulatory Networks That Respond to Cold Stress in Strawberry (Fragaria × Ananassa). Int. J. Genom. 2019, 2019, 7106092. [Google Scholar] [CrossRef] [PubMed]
- Satyakam; Zinta, G.; Singh, R.K.; Kumar, R. Cold Adaptation Strategies in Plants-An Emerging Role of Epigenetics and Antifreeze Proteins to Engineer Cold Resilient Plants. Front. Genet. 2022, 13, 909007. [Google Scholar] [CrossRef]
- Taiwo, O.O.; Storey, K.B. Contribution of Reversible Histone Acetylation to Freeze Tolerance and Recovery in Wood Frog Kidneys. Sci. Rep. 2025, 15, 27243. [Google Scholar] [CrossRef]
- Drew, K.L.; Tøien, O.; Rivera, P.M.; Smith, M.A.; Perry, G.; Rice, M.E. Role of the Antioxidant Ascorbate in Hibernation and Warming from Hibernation. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2002, 133, 483–492. [Google Scholar] [CrossRef]
- Ma, Y.L.; Rice, M.E.; Chao, M.L.; Rivera, P.M.; Zhao, H.W.; Ross, A.P.; Zhu, X.; Smith, M.A.; Drew, K.L. Ascorbate Distribution during Hibernation Is Independent of Ascorbate Redox State. Free Radic. Biol. Med. 2004, 37, 511–520. [Google Scholar] [CrossRef]
- Barnes, B.M. Freeze Avoidance in a Mammal: Body Temperatures Below 0 °C in an Arctic Hibernator. Science (1979) 1989, 244, 1593–1595. [Google Scholar] [CrossRef] [PubMed]
- MacArthur, D.L.; Dandy, J.W.T. Physiological Aspects of Overwintering in the Boreal Chorus Frog (Pseudacris Triseriata Maculata). Comp. Biochem. Physiol. Part A Physiol. 1982, 72, 137–141. [Google Scholar] [CrossRef]
- Packard, G.C.; Packard, M.J. Natural Freeze-Tolerance in Hatchling Painted Turtles? Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2003, 134, 233–246. [Google Scholar] [CrossRef]
- Jia, R.; Zhai, W.; Huang, S.; Chen, B.; Hu, R.; Jiang, S.; Xu, Q. Comparative Analysis of Differentially Acetylated Proteins between Antarctic White-Blooded Chionodraco Hamatus and Red-Blooded Trematomus Bernacchii. J. Fish. Biol. 2025. [Google Scholar] [CrossRef]
- Carrasco-Faus, G.; Márquez-Miranda, V.; Diaz-Franulic, I. Molecular Fingerprint of Cold Adaptation in Antarctic Icefish PepT1 (Chionodraco Hamatus): A Comparative Molecular Dynamics Study. Biomolecules 2025, 15, 1058. [Google Scholar] [CrossRef]
- Sinclair, B.J. Linking Energetics and Overwintering in Temperate Insects. J. Therm. Biol. 2015, 54, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, B.J.; Renault, D. Intracellular Ice Formation in Insects: Unresolved after 50 Years? Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2010, 155, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Endoh, K.; Fujikawa, S. Mechanism of Freezing Resistance in Eco-Dormant Birch Buds under Winter Subzero Temperatures. Tree Physiol. 2021, 41, 606–618. [Google Scholar] [CrossRef]
- Wu, S.; Storey, K.B. Up-Regulation of Acidic Ribosomal Phosphoprotein P0 in Response to Freezing or Anoxia in the Freeze Tolerant Wood Frog, Rana Sylvatica. Cryobiology 2005, 50, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Storey, J.M.; Li, Z.; Storey, K.B. Hypoxia Inducible Factor-1α Responds to Freezing, Anoxia and Dehydration Stresses in a Freeze-Tolerant Frog. Cryobiology 2023, 110, 79–85. [Google Scholar] [CrossRef]
- Nik-Zainal, S.; Hall, B.A. Cellular Survival over Genomic Perfection: DNA Repair Pathways Permit Some Damage to Persist, Resulting in Mutagenesis but Not Necessarily Cancer. Science 2019, 366, 802–803. [Google Scholar] [CrossRef] [PubMed]
- Hahm, J.Y.; Park, J.; Jang, E.S.; Chi, S.W. 8-Oxoguanine: From Oxidative Damage to Epigenetic and Epitranscriptional Modification. Exp. Mol. Med. 2022, 54, 1626–1642. [Google Scholar] [CrossRef]
- Andrés, C.M.C.; de la Lastra, J.M.P.; Juan, C.A.; Plou, F.J.; Pérez-Lebeña, E. Chemical Insights into Oxidative and Nitrative Modifications of DNA. Int. J. Mol. Sci. 2023, 24, 15240. [Google Scholar] [CrossRef]
- Bartek, J.; Lukas, J. DNA Damage Checkpoints: From Initiation to Recovery or Adaptation. Curr. Opin. Cell Biol. 2007, 19, 238–245. [Google Scholar] [CrossRef]
- Boyer, B.B.; Barnes, B.M. Molecular and Metabolic Aspects of Mammalian Hibernation: Expression of the Hibernation Phenotype Results from the Coordinated Regulation of Multiple Physiological and Molecular Events during Preparation for and Entry into Torpor. Bioscience 1999, 49, 713–724. [Google Scholar] [CrossRef]
- Ma, Y.L.; Zhu, X.; Rivera, P.M.; Tøien, Ø.; Barnes, B.M.; LaManna, J.C.; Smith, M.A.; Drew, K.L. Absence of Cellular Stress in Brain after Hypoxia Induced by Arousal from Hibernation in Arctic Ground Squirrels. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 289, R1297–R1306. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, T.; Streit, D.; Schroll, F.; Kovacevic, J.; Schleiff, E. Dynamics and Thermal Sensitivity of Ribosomal RNA Maturation Paths in Plants. J. Exp. Bot. 2021, 72, 7626–7644. [Google Scholar] [CrossRef]
- Palmer, R.M.; Sandbach, A.; Buckley, B.A. Tissue-Specific Effects of Temperature and Salinity on the Cell Cycle and Apoptosis in the Nile Tilapia (Oreochromis Niloticus). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2024, 297, 111706. [Google Scholar] [CrossRef]
- Pellegata, N.S.; Antoniono, R.J.; Redpath, J.L.; Stanbridge, E.J. DNA Damage and P53-Mediated Cell Cycle Arrest: A Reevaluation. Proc. Natl. Acad. Sci. USA 1996, 93, 15209–15214. [Google Scholar] [CrossRef]
- Chatterjee, N.; Walker, G.C. Mechanisms of DNA Damage, Repair and Mutagenesis. Environ. Mol. Mutagen. 2017, 58, 235–263. [Google Scholar] [CrossRef]
- Zhao, J.; Ding, Y.; Ramakrishnan, M.; Zou, L.H.; Chen, Y.; Zhou, M. LTR Retrotransposon-Derived Novel LncRNA2 Enhances Cold Tolerance in Moso Bamboo by Modulating Antioxidant Activity and Photosynthetic Efficiency. PeerJ 2025, 13, e19056. [Google Scholar] [CrossRef]
- Chirinos-Arias, M.C.; Spampinato, C.P. Spontaneous and Salt Stress-Induced Molecular Instability in the Progeny of MSH7 Deficient Arabidopsis Thaliana Plants. DNA Repair 2025, 145, 103801. [Google Scholar] [CrossRef]
- Al-attar, R.; Storey, K.B. RAGE Management: ETS1- EGR1 Mediated Transcriptional Networks Regulate Angiogenic Factors in Wood Frogs. Cell. Signal. 2022, 98, 110408. [Google Scholar] [CrossRef]
- Marcantonini, G.; Bartolini, D.; Zatini, L.; Costa, S.; Passerini, M.; Rende, M.; Luca, G.; Basta, G.; Murdolo, G.; Calafiore, R.; et al. Natural Cryoprotective and Cytoprotective Agents in Cryopreservation: A Focus on Melatonin. Molecules 2022, 27, 3254. [Google Scholar] [CrossRef] [PubMed]
- Katerji, M.; Duerksen-Hughes, P.J. DNA Damage in Cancer Development: Special Implications in Viral Oncogenesis. Am. J. Cancer Res. 2021, 11, 3956–3979. [Google Scholar] [PubMed]
- Tubbs, A.; Nussenzweig, A. Endogenous DNA Damage as a Source of Genomic Instability in Cancer. Cell 2017, 168, 644–656. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhou, X.; Wang, S.; Mao, G. DNA Damage Response(DDR): A Link between Cellular Senescence and Human Cytomegalovirus. Virol. J. 2023, 20, 250. [Google Scholar] [CrossRef]
- Huang, R.; Zhou, P.K. DNA Damage Repair: Historical Perspectives, Mechanistic Pathways and Clinical Translation for Targeted Cancer Therapy. Signal Transduct. Target. Ther. 2021, 6, 254. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, A.; Wilson, D.M. The Involvement of DNA-Damage and -Repair Defects in Neurological Dysfunction. Am. J. Hum. Genet. 2008, 82, 539–566. [Google Scholar] [CrossRef] [PubMed]
- Bauer, N.C.; Corbett, A.H.; Doetsch, P.W. The Current State of Eukaryotic DNA Base Damage and Repair. Nucleic Acids Res. 2015, 43, 10083–10101. [Google Scholar] [CrossRef]
- Cadet, J.; Davies, K.J.A. Oxidative DNA Damage & Repair: An Introduction. Free Radic. Biol. Med 2017, 107, 2–12. [Google Scholar] [CrossRef]
- Schipler, A.; Iliakis, G. DNA Double-Strand–Break Complexity Levels and Their Possible Contributions to the Probability for Error-Prone Processing and Repair Pathway Choice. Nucleic Acids Res. 2013, 41, 7589–7605. [Google Scholar] [CrossRef]
- Ciccia, A.; Elledge, S.J. The DNA Damage Response: Making It Safe to Play with Knives. Mol. Cell 2010, 40, 179–204. [Google Scholar] [CrossRef]
- Symington, L.S. Mechanism and Regulation of DNA End Resection in Eukaryotes. Crit. Rev. Biochem. Mol. Biol. 2016, 51, 195–212. [Google Scholar] [CrossRef]
- Shiloh, Y. ATM and ATR: Networking Cellular Responses to DNA Damage. Curr. Opin. Genet. Dev. 2001, 11, 71–77. [Google Scholar] [CrossRef]
- Schwab, R.A.; Blackford, A.N.; Niedzwiedz, W. ATR Activation and Replication Fork Restart Are Defective in FANCM-Deficient Cells. EMBO J. 2010, 29, 806–818. [Google Scholar] [CrossRef]
- Cimprich, K.A.; Cortez, D. ATR: An Essential Regulator of Genome Integrity. Nat. Rev. Mol. Cell Biol. 2008, 9, 616–627. [Google Scholar] [CrossRef] [PubMed]
- Lieber, M.R. The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End Joining Pathway. Annu. Rev. Biochem. 2010, 79, 181–211. [Google Scholar] [CrossRef] [PubMed]
- Valdiglesias, V.; Giunta, S.; Fenech, M.; Neri, M.; Bonassi, S. ΓH2AX as a Marker of DNA Double Strand Breaks and Genomic Instability in Human Population Studies. Mutat. Res. 2013, 753, 24–40. [Google Scholar] [CrossRef] [PubMed]
- Gong, P.; Guo, Z.; Wang, S.; Gao, S.; Cao, Q. Histone Phosphorylation in DNA Damage Response. Int. J. Mol. Sci. 2025, 26, 2405. [Google Scholar] [CrossRef] [PubMed]
- Krokan, H.E.; Bjørås, M. Base Excision Repair. Cold Spring Harb. Perspect. Biol. 2013, 5, a012583. [Google Scholar] [CrossRef]
- Boiteux, S.; Jinks-Robertson, S. DNA Repair Mechanisms and the Bypass of DNA Damage in Saccharomyces Cerevisiae. Genetics 2013, 193, 1025–1064. [Google Scholar] [CrossRef]
- Crouse, G.F. Non-Canonical Actions of Mismatch Repair. DNA Repair 2015, 38, 102–109. [Google Scholar] [CrossRef]
- Serrano, L.; Liang, L.; Chang, Y.; Deng, L.; Maulion, C.; Nguyen, S.; Tischfield, J.A. Homologous Recombination Conserves DNA Sequence Integrity Throughout the Cell Cycle in Embryonic Stem Cells. Stem. Cells Dev. 2010, 20, 363. [Google Scholar] [CrossRef]
- Barnum, K.J.; O’Connell, M.J. Cell Cycle Regulation by Checkpoints. Methods Mol. Biol. 2014, 1170, 29–40. [Google Scholar] [CrossRef]
- Soto-Palma, C.; Niedernhofer, L.J.; Faulk, C.D.; Dong, X. Epigenetics, DNA Damage, and Aging. J. Clin. Investig. 2022, 132, e158446. [Google Scholar] [CrossRef]
- Sanchez, A.; Lee, D.; Kim, D.I.; Miller, K.M. Making Connections: Integrative Signaling Mechanisms Coordinate DNA Break Repair in Chromatin. Front. Genet. 2021, 12, 747734. [Google Scholar] [CrossRef]
- Jenuwein, T.; Allis, C.D. Translating the Histone Code. Science 2001, 293, 1074–1080. [Google Scholar] [CrossRef] [PubMed]
- Bannister, A.J.; Kouzarides, T. Regulation of Chromatin by Histone Modifications. Cell Res. 2011, 21, 381–395. [Google Scholar] [CrossRef]
- Tjeertes, J.V.; Miller, K.M.; Jackson, S.P. Screen for DNA-Damage-Responsive Histone Modifications Identifies H3K9Ac and H3K56Ac in Human Cells. EMBO J. 2009, 28, 1878–1889. [Google Scholar] [CrossRef] [PubMed]
- Hunt, C.R.; Ramnarain, D.; Horikoshi, N.; Iyengar, P.; Pandita, R.K.; Shay, J.W.; Pandita, T.K. Histone Modifications and DNA Double-Strand Break Repair after Exposure to Ionizing Radiations. Radiat. Res. 2013, 179, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, S.K.; Nisha; Pandita, S.; Bahadur, A.; Verma, P.C. Recent Advancements in the Role of Histone Acetylation Dynamics to Improve Stress Responses in Plants. Mol. Biol. Rep. 2024, 51, 413. [Google Scholar] [CrossRef]
- Padeken, J.; Methot, S.P.; Gasser, S.M. Establishment of H3K9-Methylated Heterochromatin and Its Functions in Tissue Differentiation and Maintenance. Nat. Rev. Mol. Cell Biol. 2022, 23, 623–640. [Google Scholar] [CrossRef]
- Pappalardo, X.G.; Barra, V. Losing DNA Methylation at Repetitive Elements and Breaking Bad. Epigenetics Chromatin 2021, 14, 25. [Google Scholar] [CrossRef]
- Di Nisio, E.; Lupo, G.; Licursi, V.; Negri, R. Corrigendum: The Role of Histone Lysine Methylation in the Response of Mammalian Cells to Ionizing Radiation. Front. Genet. 2022, 13, 639602. [Google Scholar] [CrossRef]
- Prabhu, K.S.; Kuttikrishnan, S.; Ahamad, N.; Habeeba, U.; Mariyam, Z.; Suleman, M.; Bhat, A.A.; Uddin, S. H2AX: A Key Player in DNA Damage Response and a Promising Target for Cancer Therapy. Biomed. Pharmacother. 2024, 175, 116663. [Google Scholar] [CrossRef]
- Kinner, A.; Wu, W.; Staudt, C.; Iliakis, G. γ-H2AX in Recognition and Signaling of DNA Double-Strand Breaks in the Context of Chromatin. Nucleic Acids Res. 2008, 36, 5678–5694. [Google Scholar] [CrossRef]
- Liu, N.; Fromm, M.; Avramova, Z. H3K27me3 and H3K4me3 Chromatin Environment at Super-Induced Dehydration Stress Memory Genes of Arabidopsis Thaliana. Mol. Plant 2014, 7, 502–513. [Google Scholar] [CrossRef]
- Wu, Z.; Guo, Z.; Wang, K.; Wang, R.; Fang, C. Comparative Metabolomic Analysis Reveals the Role of OsHPL1 in the Cold-Induced Metabolic Changes in Rice. Plants 2023, 12, 2032. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING V11: Protein-Protein Association Networks with Increased Coverage, Supporting Functional Discovery in Genome-Wide Experimental Datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [PubMed]
- Skene, P.J.; Henikoff, S. An Efficient Targeted Nuclease Strategy for High-Resolution Mapping of DNA Binding Sites. eLife 2017, 6, e21856. [Google Scholar] [CrossRef]
- Buenrostro, J.D.; Giresi, P.G.; Zaba, L.C.; Chang, H.Y.; Greenleaf, W.J. Transposition of Native Chromatin for Fast and Sensitive Epigenomic Profiling of Open Chromatin, DNA-Binding Proteins and Nucleosome Position. Nat. Methods 2013, 10, 1213–1218. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Langfelder, P.; Horvath, S. WGCNA: An R Package for Weighted Correlation Network Analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef]
| Organism | Studied Mechanisms | References |
|---|---|---|
| Wood frog (Rana sylvatica) | Histone methylation (H3K27me3, H3K36me3), histone acetylation, antioxidant response, DNA repair post-thaw | Bloskie et al., 2024 [11]; Lung & Storey, 2022 [8]; Taiwo et al., 2024 [15]; Taiwo et al., 2025 [22] |
| Arctic ground squirrel (Urocitellus parryii) | Antioxidant defenses, lack of cellular stress post-hibernation | [23,24,25] |
| 13-lined ground squirrel (Ictidomys tridecemlineatus) | Reversible histone acetylation and methylation during torpor | [16] |
| Boreal chorus frog (Pseudacris maculata) | Accumulation of cryoprotectants (glucose, urea), freeze tolerance mechanisms | [26] |
| Painted turtle (Chrysemys picta) | Anoxia tolerance, metabolic depression, DNA repair mechanisms | [1,27] |
| Antarctic Icefish (Chionodraco hamatus) | Histone modifications under cold stress | [28,29] |
| Overwintering insects (e.g., Eurosta solidaginis) | AFP production, cryoprotectants (glycerol, trehalose), metabolic reprogramming | [30,31] |
| Eco-dormant birch buds (Betula spp.) | Structural freeze resistance, vitrification, antioxidant systems | [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taiwo, O.O.; Alaka, W.; Storey, K.B. Molecular Mechanisms of DNA Damage Response and Epigenetic Regulation in Cold-Adapted Species: Implications for Genome Stability and Molecular Network Perspective. Curr. Issues Mol. Biol. 2025, 47, 923. https://doi.org/10.3390/cimb47110923
Taiwo OO, Alaka W, Storey KB. Molecular Mechanisms of DNA Damage Response and Epigenetic Regulation in Cold-Adapted Species: Implications for Genome Stability and Molecular Network Perspective. Current Issues in Molecular Biology. 2025; 47(11):923. https://doi.org/10.3390/cimb47110923
Chicago/Turabian StyleTaiwo, Olawale O., Waliu Alaka, and Kenneth B. Storey. 2025. "Molecular Mechanisms of DNA Damage Response and Epigenetic Regulation in Cold-Adapted Species: Implications for Genome Stability and Molecular Network Perspective" Current Issues in Molecular Biology 47, no. 11: 923. https://doi.org/10.3390/cimb47110923
APA StyleTaiwo, O. O., Alaka, W., & Storey, K. B. (2025). Molecular Mechanisms of DNA Damage Response and Epigenetic Regulation in Cold-Adapted Species: Implications for Genome Stability and Molecular Network Perspective. Current Issues in Molecular Biology, 47(11), 923. https://doi.org/10.3390/cimb47110923

