Mechanistic Insight into Phenolic Compounds in Mitigating Diabetic Complications Induced by Advanced Glycation End Products
Abstract
1. Introduction
2. Literature Search and Methodology
3. Diabetic Complications and AGEs
3.1. AGE Formation Mechanism and the Mechanistic Role in Diabetic Complications
3.2. Major AGE Types
3.3. Pathophysiological Consequences of AGE-Induced Diabetic Complications
4. Signaling Pathways Involved in AGE-Induced Diabetic Complications
4.1. AGE–RAGE Signaling Pathway
4.2. AGE-Induced Activation of MAPK Pathways
4.3. NF-κB Pathway in AGE-Mediated Inflammation
4.4. AGEs and the PI3K/Akt Pathway
4.5. NLRP3 Inflammasome Activation
4.6. PKC Pathway
4.7. Other Signaling Pathways Involved in AGE-Induced Diabetic Complications
5. Phenolic Compounds in Diabetes Management
5.1. Major Dietary Sources of Phenolic Compounds
5.2. Mechanisms of Action of Phenolic Compounds
5.3. Reducing AGE Formation
5.3.1. Inhibition of Free Radical Formation
5.3.2. Scavenging of Reactive Dicarbonyl Compounds
5.3.3. Metal Ion Chelation
5.3.4. Modulation of Glyoxalase I Activity
5.3.5. Inhibition of AGE–Receptor Interactions
5.4. Pharmacokinetics of Phenolic Compounds
6. Evidence from Experimental Studies on Phenolic Compounds in Diabetes
6.1. In Vitro Studies
6.2. In Vivo Studies
6.3. Human Clinical Trials and Observational Studies
6.4. The Toxicity of Polyphenolic Compounds and Their Interactions
7. Modern Computational Tools in AGE and Phenolic Compounds Research
7.1. Molecular Docking and Virtual Screening
7.2. Molecular Dynamics Simulations
7.3. Network Pharmacology Approaches
7.4. Bioinformatics Tools for Gene Expression and Pathway Analyses
8. Therapeutic Potential and Future Directions
8.1. Future Research
8.2. Potential Synergism with Antidiabetic Drugs
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maity, M.; Kumari, A. Understanding Diabetes Mellitus: A Descriptive Study of Its Types, Causes and Health Impacts. Bharati Int. J. Multidiscip. Res. Dev. 2025, 3, 34–39. [Google Scholar]
- Panjiyev, J. Etiological Factors and Treatment Principles of Diabetes Mellitus. Mod. Sci. Res. 2025, 4, 1788–1794. [Google Scholar]
- Vashishth, D.; Dhaliwal, R.; Rubin, M. AGEs (Advanced Glycation End-products) in bone come of age. Bone 2025, 190, 117301. [Google Scholar] [PubMed]
- Zhang, Y.; Zhang, Z.; Tu, C.; Chen, X.; He, R. Advanced Glycation End Products in Disease Development and Potential Interventions. Antioxidants 2025, 14, 492. [Google Scholar] [CrossRef]
- Rhee, S.Y.; Kim, Y.S. The role of advanced glycation end products in diabetic vascular complications. Diabetes Metab. J. 2018, 42, 188–195. [Google Scholar] [CrossRef]
- Yang, P.; Feng, J.; Peng, Q.; Liu, X.; Fan, Z. Advanced glycation end products: Potential mechanism and therapeutic target in cardiovascular complications under diabetes. Oxidative Med. Cell. Longev. 2019, 2019, 9570616. [Google Scholar] [CrossRef]
- Khalid, M.; Petroianu, G.; Adem, A. Advanced glycation end products and diabetes mellitus: Mechanisms and perspectives. Biomolecules 2022, 12, 542. [Google Scholar] [CrossRef]
- Ribeiro, P.V.M.; Tavares, J.F.; Costa, M.A.C.; Mattar, J.B.; Alfenas, R.C.G. Effect of reducing dietary advanced glycation end products on obesity-associated complications: A systematic review. Nutr. Rev. 2019, 77, 725–734. [Google Scholar] [CrossRef]
- Bhattacharya, R.; Alam, M.R.; Kamal, M.A.; Seo, K.J.; Singh, L.R. AGE-RAGE axis culminates into multiple pathogenic processes: A central road to neurodegeneration. Front. Mol. Neurosci. 2023, 16, 1155175. [Google Scholar] [CrossRef]
- Rezatabar, S.; Karimian, A.; Rameshknia, V.; Parsian, H.; Majidinia, M.; Kopi, T.A.; Bishayee, A.; Sadeghinia, A.; Yousefi, M.; Monirialamdari, M.; et al. RAS/MAPK signaling functions in oxidative stress, DNA damage response and cancer progression. J. Cell. Physiol. 2019, 234, 14951–14965. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, J.; Gong, N. Role of the PI3K/Akt signaling pathway in liver ischemia reperfusion injury: A narrative review. Ann. Palliat. Med. 2022, 11, 806–817. [Google Scholar]
- Hu, H.; Jiang, H.; Zhu, L.; Wu, X.; Han, C. Accumulation of advanced glycation endproducts and subclinical inflammation in deep tissues of adult patients with and without diabetes. Can. J. Diabetes 2018, 42, 525–532.E4. [Google Scholar] [CrossRef]
- Anwar, S.; Khan, S.; Almatroudi, A.; Khan, A.A.; Alsahli, M.A.; Almatroodi, S.A.; Rahmani, A.H. A review on mechanism of inhibition of advanced glycation end products formation by plant derived polyphenolic compounds. Mol. Biol. Rep. 2021, 48, 787–805. [Google Scholar] [CrossRef]
- Olszowy, M. What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiol. Biochem. 2019, 144, 135–143. [Google Scholar] [CrossRef]
- Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Plant polyphenols: Chemical properties, biological activities, and synthesis. Angew. Chem. Int. Ed. 2011, 50, 586–621. [Google Scholar]
- Duthie, G.G.; Gardner, P.T.; Kyle, J.A.M. Plant polyphenols: Are they the new magic bullet? Proc. Nutr. Soc. 2003, 62, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, P.F.; Justino, G.C. Structural analysis of flavonoids and related compounds-a review of spectroscopic applications. In Phytochemicals—A Global Perspective of Their Role in Nutrition and Health; InTech: Vienna, Austria, 2012; p. 33. [Google Scholar]
- Santos-Buelga, C.; Feliciano, A.S. Flavonoids: From structure to health issues. 2017, 22, 477. Molecules 2017, 22(3), 477. [CrossRef]
- Croft, K.D. The chemistry and biological effects of flavonoids and phenolic acids a. Ann. N. Y. Acad. Sci. 1998, 854, 435–442. [Google Scholar] [PubMed]
- Cassidy, A.; Hanley, B.; Lamuela-Raventos, R.M. Isoflavones, lignans and stilbenes–origins, metabolism and potential importance to human health. J. Sci. Food Agric. 2000, 80, 1044–1062. [Google Scholar]
- Han, Z.; Zhu, M.; Wan, X.; Zhai, X.; Ho, C.-T.; Zhang, L. Food polyphenols and Maillard reaction: Regulation effect and chemical mechanism. Crit. Rev. Food Sci. Nutr. 2024, 64, 4904–4920. [Google Scholar]
- Shen, C.-Y.; Lu, C.-H.; Wu, C.-H.; Li, K.-J.; Kuo, Y.-M.; Hsieh, S.-C.; Yu, C.-L. The development of maillard reaction, and advanced glycation end product (AGE)-receptor for AGE (RAGE) signaling inhibitors as novel therapeutic strategies for patients with AGE-related diseases. Molecules 2020, 25, 5591. [Google Scholar]
- Kim, Y.; Keogh, J.B.; Clifton, P.M. Polyphenols and glycemic control. Nutrients 2016, 8, 17. [Google Scholar] [CrossRef]
- Oluwole, O.; Fernando, W.B.; Lumanlan, J.; Ademuyiwa, O.; Jayasena, V. Role of phenolic acid, tannins, stilbenes, lignans and flavonoids in human health—A review. Int. J. Food Sci. Technol. 2022, 57, 6326–6335. [Google Scholar] [CrossRef]
- Caro-Ordieres, T.; Marín-Royo, G.; Opazo-Ríos, L.; Jiménez-Castilla, L.; Moreno, J.A.; Gómez-Guerrero, C.; Egido, J. The coming age of flavonoids in the treatment of diabetic complications. J. Clin. Med. 2020, 9, 346. [Google Scholar] [CrossRef]
- Remigante, A.; Spinelli, S.; Gambardella, L.; Straface, E.; Cafeo, G.; Russo, M.; Caruso, D.; Dugo, P.; Dossena, S.; Marino, A.; et al. Anion exchanger1 (AE1/SLC4A1) function is impaired in red blood cells from prediabetic subjects: Potential benefits of finger lime (Citrus australasica, Faustrime cultivar) juice extract. Cell Biochem. Funct. 2024, 42, e4105. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferré, M.; Merino, J.; Sun, Q.; Fitó, M.; Salas-Salvadó, J. Dietary Polyphenols, Mediterranean Diet, Prediabetes, and Type 2 Diabetes: A Narrative Review of the Evidence. Oxidative Med. Cell. Longev. 2017, 2017, 6723931. [Google Scholar] [CrossRef]
- Teng, H.; Chen, L. Polyphenols and bioavailability: An update. Crit. Rev. Food Sci. Nutr. 2019, 59, 2040–2051. [Google Scholar] [CrossRef]
- Enaru, B.; Socaci, S.; Farcas, A.; Socaciu, C.; Danciu, C.; Stanila, A.; Diaconeasa, Z. Novel delivery systems of polyphenols and their potential health benefits. Pharmaceuticals 2021, 14, 946. [Google Scholar] [CrossRef]
- Esfanjani, A.F.; Assadpour, E.; Jafari, S.M. Improving the bioavailability of phenolic compounds by loading them within lipid-based nanocarriers. Trends Food Sci. Technol. 2018, 76, 56–66. [Google Scholar] [CrossRef]
- Ahmed, N. Advanced glycation endproducts—Role in pathology of diabetic complications. Diabetes Res. Clin. Pract. 2005, 67, 3–21. [Google Scholar] [CrossRef] [PubMed]
- Kovacic, P.; Somanathan, R. Cell signaling and receptors in toxicity of advanced glycation end products (AGEs): α-dicarbonyls, radicals, oxidative stress and antioxidants. J. Recept. Signal Transduct. 2011, 31, 332–339. [Google Scholar] [CrossRef]
- Provost, J. The Maillard Reaction. In Food Aroma Evolution; CRC Press: Boca Raton, FL, USA, 2019; pp. 281–291. [Google Scholar]
- Fallavena, L.P.; Rodrigues, N.P.; Marczak, L.D.F.; Mercali, G.D. Formation of advanced glycation end products by novel food processing technologies: A review. Food Chem. 2022, 393, 133338. [Google Scholar] [CrossRef]
- Yamagishi, S.-i.; Nakamura, N.; Suematsu, M.; Kaseda, K.; Matsui, T. Advanced glycation end products: A molecular target for vascular complications in diabetes. Mol. Med. 2015, 21, S32–S40. [Google Scholar] [CrossRef]
- Yamagishi, S.-i. Role of advanced glycation end products (AGEs) and receptor for AGEs (RAGE) in vascular damage in diabetes. Exp. Gerontol. 2011, 46, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Salahuddin, P.; Rabbani, G.; Khan, R. The role of advanced glycation end products in various types of neurodegenerative disease: A therapeutic approach. Cell. Mol. Biol. Lett. 2014, 19, 407–437. [Google Scholar] [CrossRef] [PubMed]
- Vistoli, G.; De Maddis, D.; Cipak, A.; Zarkovic, N.; Carini, M.; Aldini, G. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): An overview of their mechanisms of formation. Free Radic. Res. 2013, 47, 3–27. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.P.; Bali, A.; Singh, N.; Jaggi, A.S. Advanced glycation end products and diabetic complications. Korean J. Physiol. Pharmacol. Off. J. Korean Physiol. Soc. Korean Soc. Pharmacol. 2014, 18, 1. [Google Scholar] [CrossRef]
- Delgado-Andrade, C. Carboxymethyl-lysine: Thirty years of investigation in the field of AGE formation. Food Funct. 2016, 7, 46–57. [Google Scholar] [CrossRef]
- Zhang, J. Mechanistic and Biological Insights into Carbohydrate and Lipid Modifications of Proteins. Ph.D. Thesis, Case Western Reserve University, Cleveland, OH, USA, 2011. Available online: http://rave.ohiolink.edu/etdc/view?acc_num=case1308315383 (accessed on 12 October 2025).
- Wrobel, K.; Wrobel, K.; Ortiz, S.J.; Escobosa, A.R.C. What are AGEs, their chemical structure, and how can they be measured. In Dietary AGEs and Their Role in Health and Disease; CRC Press: Boca Raton, FL, USA, 2017; pp. 3–18. [Google Scholar]
- Khan, M.I.; Ashfaq, F.; Alsayegh, A.A.; Hamouda, A.; Khatoon, F.; Altamimi, T.N.; Alhodieb, F.S.; Beg, M.M.A. Advanced glycation end product signaling and metabolic complications: Dietary approach. World J. Diabetes 2023, 14, 995. [Google Scholar] [CrossRef]
- Marshall, C.B. Rethinking glomerular basement membrane thickening in diabetic nephropathy: Adaptive or pathogenic? Am. J. Physiol.-Ren. Physiol. 2016, 311, F831–F843. [Google Scholar] [CrossRef]
- Xu, J.; Chen, L.-J.; Yu, J.; Wang, H.-J.; Zhang, F.; Liu, Q.; Wu, J. Involvement of advanced glycation end products in the pathogenesis of diabetic retinopathy. Cell. Physiol. Biochem. 2018, 48, 705–717. [Google Scholar] [CrossRef]
- Del Turco, S.; Basta, G. An update on advanced glycation endproducts and atherosclerosis. Biofactors 2012, 38, 266–274. [Google Scholar] [CrossRef]
- Mota, K.O.; de Vasconcelos, C.M.L.; Kirshenbaum, L.A.; Dhalla, N.S. The Role of Advanced Glycation End-Products in the Pathophysiology and Pharmacotherapy of Cardiovascular Disease. Int. J. Mol. Sci. 2025, 26, 7311. [Google Scholar] [CrossRef]
- Steens, I.L.M.; Schram, M.T.; Houben, A.J.H.M.; Berendschot, T.T.J.M.; Koster, A.; Bosma, H.; Eussen, S.J.P.M.; de Galan, B.E.; van Sloten, T.T. Type 2 diabetes and depression via microvascular dysfunction, neurodegeneration, inflammation, advanced glycation end products (AGEs), arterial stiffness. Diabetes Obes. Metab. 2025, 27, 4847–4858. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Y.; Tian, N.; Xie, J. Exploring the protective effects of Spinosin against advanced glycation end product-induced cellular damage through modulation RAGE/MAPK/NF-κB pathway. Food Biosci. 2025, 64, 105951. [Google Scholar] [CrossRef]
- Vianello, E.; Beltrami, A.P.; Aleksova, A.; Janjusevic, M.; Fluca, A.L.; Corsi Romanelli, M.M.; La Sala, L.; Dozio, E. The advanced glycation end-products (AGE)–receptor for AGE system (RAGE): An inflammatory pathway linking obesity and cardiovascular diseases. Int. J. Mol. Sci. 2025, 26, 3707. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Ma, T.; Wang, Y.; Zhang, C.; Chu, Y.; Guo, Y.; Xi, J.; Jiao, D.; Li, B.; Xie, C.; et al. Paeoniflorin modulates AGEs/RAGE/P38MAPK/ERK/mTOR autophagy pathway to improve cognitive dysfunction in MRL/lpr mice. Int. J. Biol. Macromol. 2025, 307, 141765. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S. Pathological role of RAGE underlying progression of various diseases: Its potential as biomarker and therapeutic target. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2025, 398, 3467–3487. [Google Scholar] [CrossRef]
- Ayoub, S.; Arabi, M.; Al-Najjar, Y.; Laswi, I.; Outeiro, T.F.; Chaari, A. Glycation in Alzheimer’s Disease and Type 2 Diabetes: The Prospect of Dual Drug Approaches for Therapeutic Interventions. Mol. Neurobiol. 2025, 62, 14859–14882. [Google Scholar] [CrossRef]
- Flores-Estrada, J.; Cano-Martínez, A.; Ibarra-Lara, L.; Jiménez, A.; Palacios-Reyes, C.; García, L.J.P.; Ortiz-López, M.G.; Rodríguez-Peña, O.N.; Hernández-Portilla, L.B. Spinach Extract Reduces Kidney Damage in Diabetic Rats by Impairing the AGEs/RAGE Axis. Int. J. Mol. Sci. 2025, 26, 4730. [Google Scholar] [CrossRef]
- Falcicchia, C.; Tozzi, F.; Arancio, O.; Watterson, D.M.; Origlia, N. Involvement of p38 MAPK in synaptic function and dysfunction. Int. J. Mol. Sci. 2020, 21, 5624. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Anshu, T.; Maharana, K.C.; Sinha, S. Molecular insights into diabetic wound healing: Focus on Wnt/β-catenin and MAPK/ERK signaling pathways. Cytokine 2025, 191, 156957. [Google Scholar] [CrossRef]
- Kavitha, S.A.; Zainab, S.; Muthyalaiah, Y.S.; John, C.M.; Arockiasamy, S. Mechanism and implications of advanced glycation end products (AGE) and its receptor RAGE axis as crucial mediators linking inflammation and obesity. Mol. Biol. Rep. 2025, 52, 556. [Google Scholar] [CrossRef]
- Wang, Z.-j.; Wang, W.; Jia, K.-x.; Zhang, H.-b.; Wang, J.-a.; Chen, C. The influence of PPARγ mediated MAPK and NF-κB activation in AGEs stimulated apoptosis and autophagy in human chondrocytes. J. Orthop. 2025, 66, 204–212. [Google Scholar] [CrossRef]
- Chen, S.; Yu, Y.; Su, Y.; Lian, X.; Jiang, L.; Li, Z.; Zhang, M.; Gao, Y.; Zhang, H.; Zhu, X.; et al. Screening and identification of host signaling pathways for alleviating influenza-induced production of pro-inflammatory cytokines, IP-10, IL-8, and MCP-1, using a U937 cell-based influenza model. Front. Microbiol. 2025, 16, 1535002. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, B.; Liu, L.; Huang, X.; Cai, Y.; Liao, L.; Min, X.; Gu, Y. The mechanistic study of quercetin in the treatment of alcoholic brain injury via the JNK/P38 MAPK signaling pathway. Apoptosis 2025, 30, 1875–1892. [Google Scholar] [CrossRef]
- Liu, Y.; Li, D.; Zhang, T.; Wang, K.; Liang, X.; Zong, X.; Yang, H.; Li, Z. Effect of imatinib on lipopolysaccharide-induced acute lung injury and endothelial dysfunction through the P38 MAPK and NF-κB signaling pathways in vivo and in vitro. Respir. Physiol. Neurobiol. 2025, 333, 104388. [Google Scholar] [CrossRef] [PubMed]
- Hota, A.; Bennett, A.M. MAP kinase phosphatases in metabolic diseases. Trends Endocrinol. Metab. 2025. In press. [Google Scholar] [CrossRef]
- Ritu; Goyal, R.K.; Narwal, S.; Bhatt, A.; Sehrawat, R.; Devi, P.; Gulati, M.; Singla, R.K. Role of MMP-9 and NF-κB in diabetic retinopathy: Progression and potential role of bioflavonoids in the mitigation of diabetic retinopathy. Curr. Med. Chem. 2025, 32, 4992–5007. [Google Scholar] [CrossRef] [PubMed]
- Serasanambati, M.; Chilakapati, S.R. Function of nuclear factor kappa B (NF-kB) in human diseases-a review. S. Indian J. Biol. Sci. 2016, 2, 368–387. [Google Scholar] [CrossRef]
- Korbecki, J.; Simińska, D.; Gąssowska-Dobrowolska, M.; Listos, J.; Gutowska, I.; Chlubek, D.; Baranowska-Bosiacka, I. Chronic and cycling hypoxia: Drivers of cancer chronic inflammation through HIF-1 and NF-κB activation: A review of the molecular mechanisms. Int. J. Mol. Sci. 2021, 22, 10701. [Google Scholar]
- Lingappan, K. NF-κB in oxidative stress. Curr. Opin. Toxicol. 2018, 7, 81–86. [Google Scholar] [CrossRef]
- Sindhughosa, D.A.; Pranamartha, A. The involvement of proinflammatory cytokines in diabetic nephropathy: Focus on interleukin 1 (IL-1), interleukin 6 (IL-6), and tumor necrosis factor-alpha (TNF-α) signaling mechanism. Bali Med. J. 2017, 6, 44–51. [Google Scholar] [CrossRef]
- Rayego-Mateos, S.; Morgado-Pascual, J.L.; Opazo-Ríos, L.; Guerrero-Hue, M.; García-Caballero, C.; Vázquez-Carballo, C.; Mas, S.; Sanz, A.B.; Herencia, C.; Mezzano, S.; et al. Pathogenic pathways and therapeutic approaches targeting inflammation in diabetic nephropathy. Int. J. Mol. Sci. 2020, 21, 3798. [Google Scholar] [CrossRef] [PubMed]
- Zand, H.; Morshedzadeh, N.; Naghashian, F. Signaling pathways linking inflammation to insulin resistance. Diabetes Metab. Syndr. Clin. Res. Rev. 2017, 11, S307–S309. [Google Scholar] [CrossRef] [PubMed]
- Koundouros, N.; Poulogiannis, G. Phosphoinositide 3-kinase/Akt signaling and redox metabolism in cancer. Front. Oncol. 2018, 8, 160. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wu, L.; Jin, C.; Lin, J.; Bi, X.; Shen, Z.; Yu, L.; Fu, G.; Zhu, J. Advanced glycation end products upregulates the expression of connexin43 via ERK MAPK and PI3K/Akt pathways in human endothelial cells. Int. J. Clin. Exp. Med. 2019, 12, 1545–1553. [Google Scholar]
- Zhang, Z.; Liu, H.; Liu, J. Akt activation: A potential strategy to ameliorate insulin resistance. Diabetes Res. Clin. Pract. 2019, 156, 107092. [Google Scholar] [CrossRef]
- Pi, X.; Xie, L.; Patterson, C. Emerging roles of vascular endothelium in metabolic homeostasis. Circ. Res. 2018, 123, 477–494. [Google Scholar] [CrossRef]
- Li, Y.-Z.; Liang, F.-Q.; Lin, S.-Z.; Zeng, K.; Cai, H.-D.; Liang, M. Advanced glycation end products induce autophagy in endothelial cells through oxidative stress and regulation of the RhoA-mTOR signaling pathway. Immunobiology 2025, 230, 153088. [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; Wu, Y.; Duan, R.; Zhang, J.; Du, F.; Zhang, Q.; Li, Y.; Li, N. Effects of vaspin on pancreatic β cell secretion via PI3K/Akt and NF-κB signaling pathways. PLoS ONE 2017, 12, e0189722. [Google Scholar] [CrossRef]
- Passarelli, M.; Machado, U.F. AGEs-induced and endoplasmic reticulum stress/inflammation-mediated regulation of GLUT4 expression and atherogenesis in diabetes mellitus. Cells 2021, 11, 104. [Google Scholar] [CrossRef]
- Song, Y.; Wang, Y.; Zhang, Y.; Geng, W.; Liu, W.; Gao, Y.; Li, S.; Wang, K.; Wu, X.; Kang, L.; et al. Advanced glycation end products regulate anabolic and catabolic activities via NLRP3-inflammasome activation in human nucleus pulposus cells. J. Cell. Mol. Med. 2017, 21, 1373–1387. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; You, H.; Li, X.-M.; Liu, T.-H.; Wang, P.; Wang, B.-E. HMGB1 promotes the synthesis of pro-IL-1β and pro-IL-18 by activation of p38 MAPK and NF-κB through receptors for advanced glycation end-products in macrophages. Asian Pac. J. Cancer Prev. 2012, 13, 1365–1370. [Google Scholar] [CrossRef]
- Sollberger, G.; Strittmatter, G.E.; Garstkiewicz, M.; Sand, J.; Beer, H.-D. Caspase-1: The inflammasome and beyond. Innate Immun. 2014, 20, 115–125. [Google Scholar] [CrossRef]
- Idris, I.; Gray, S.; Donnelly, R. Protein kinase C activation: Isozyme-specific effects on metabolism and cardiovascular complications in diabetes. Diabetologia 2001, 44, 659–673. [Google Scholar] [CrossRef] [PubMed]
- Poole, A.W.; Pula, G.; Hers, I.; Crosby, D.; Jones, M.L. PKC-interacting proteins: From function to pharmacology. Trends Pharmacol. Sci. 2004, 25, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Noh, H.; King, G.L. The role of protein kinase C activation in diabetic nephropathy. Kidney Int. 2007, 72, S49–S53. [Google Scholar] [CrossRef]
- Aiello, L.P. The potential role of PKC β in diabetic retinopathy and macular edema. Surv. Ophthalmol. 2002, 47, S263–S269. [Google Scholar] [CrossRef]
- Tang, Q.; Buonfiglio, F.; Böhm, E.W.; Zhang, L.; Pfeiffer, N.; Korb, C.A.; Gericke, A. Diabetic retinopathy: New treatment approaches targeting redox and immune mechanisms. Antioxidants 2024, 13, 594. [Google Scholar] [CrossRef]
- Hu, H.-H.; Chen, D.-Q.; Wang, Y.-N.; Feng, Y.-L.; Cao, G.; Vaziri, N.D.; Zhao, Y.-Y. New insights into TGF-β/Smad signaling in tissue fibrosis. Chem.-Biol. Interact. 2018, 292, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, H.-L.; Liu, T.-T.; Lan, H.-Y. TGF-beta as a master regulator of diabetic nephropathy. Int. J. Mol. Sci. 2021, 22, 7881. [Google Scholar] [CrossRef]
- Hela, F.; Aguayo-Mazzucato, C. Interaction between autophagy and senescence in pancreatic beta cells. Biology 2023, 12, 1205. [Google Scholar] [CrossRef]
- Sruthi, C.R.; Raghu, K.G. Advanced glycation end products and their adverse effects: The role of autophagy. J. Biochem. Mol. Toxicol. 2021, 35, e22710. [Google Scholar] [CrossRef]
- Piperi, C.; Goumenos, A.; Adamopoulos, C.; Papavassiliou, A.G. AGE/RAGE signalling regulation by miRNAs: Associations with diabetic complications and therapeutic potential. Int. J. Biochem. Cell Biol. 2015, 60, 197–201. [Google Scholar]
- Parveen, A.; Sultana, R.; Lee, S.M.; Kim, T.H.; Kim, S.Y. Phytochemicals against anti-diabetic complications: Targeting the advanced glycation end product signaling pathway. Arch. Pharmacal Res. 2021, 44, 378–401. [Google Scholar] [CrossRef]
- Kay, A.M.; Simpson, C.L.; Stewart, J.A., Jr. The role of AGE/RAGE signaling in diabetes-mediated vascular calcification. J. Diabetes Res. 2016, 2016, 6809703. [Google Scholar] [CrossRef]
- Nedić, O.; Rattan, S.I.S.; Grune, T.; Trougakos, I.P. Molecular effects of advanced glycation end products on cell signalling pathways, ageing and pathophysiology. Free Radic. Res. 2013, 47, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Yamagishi, S.-i.; Maeda, S.; Matsui, T.; Ueda, S.; Fukami, K.; Okuda, S. Role of advanced glycation end products (AGEs) and oxidative stress in vascular complications in diabetes. Biochim. et Biophys. Acta (BBA)—Gen. Subj. 2012, 1820, 663–671. [Google Scholar] [CrossRef]
- Ren, X.; Ren, L.; Wei, Q.; Shao, H.; Chen, L.; Liu, N. Advanced glycation end-products decreases expression of endothelial nitric oxide synthase through oxidative stress in human coronary artery endothelial cells. Cardiovasc. Diabetol. 2017, 16, 52. [Google Scholar] [CrossRef]
- Wan, L.; Bai, X.; Zhou, Q.; Chen, C.; Wang, H.; Liu, T.; Xue, J.; Wei, C.; Xie, L. The advanced glycation end-products (AGEs)/ROS/NLRP3 inflammasome axis contributes to delayed diabetic corneal wound healing and nerve regeneration. Int. J. Biol. Sci. 2022, 18, 809–825. [Google Scholar] [CrossRef]
- Nie, T.; Cooper, G.J.S. Mechanisms underlying the antidiabetic activities of polyphenolic compounds: A review. Front. Pharmacol. 2021, 12, 798329. [Google Scholar] [CrossRef]
- Albuquerque, B.R.; Heleno, S.A.; Oliveira, M.B.P.P.; Barros, L.; Ferreira, I.C.F.R. Phenolic compounds: Current industrial applications, limitations and future challenges. Food Funct. 2021, 12, 14–29. [Google Scholar] [CrossRef] [PubMed]
- Andrés-Lacueva, C.; Medina-Remon, A.; Llorach, R.; Urpi-Sarda, M.; Khan, N.; Chiva-Blanch, G.; Zamora-Ros, R.; Rotches-Ribalta, M.; Lamuela-Raventós, R.M. Phenolic compounds: Chemistry and occurrence in fruits and vegetables. In Fruit and Vegetable Phytochemicals: Chemistry, Nutritional Value, and Stability; Wiley: Hoboken, NJ, USA, 2009; pp. 53–88. [Google Scholar]
- Pinto, T.; Aires, A.; Cosme, F.; Bacelar, E.; Morais, M.C.; Oliveira, I.; Ferreira-Cardoso, J.; Anjos, R.; Vilela, A.; Gonçalves, B. Bioactive (poly) phenols, volatile compounds from vegetables, medicinal and aromatic plants. Foods 2021, 10, 106. [Google Scholar] [CrossRef] [PubMed]
- Golovinskaia, O.; Wang, C.-K. Review of functional and pharmacological activities of berries. Molecules 2021, 26, 3904. [Google Scholar] [CrossRef]
- de Ancos, B.; González, E.M.; Cano, M.P. Ellagic acid, vitamin C, and total phenolic contents and radical scavenging capacity affected by freezing and frozen storage in raspberry fruit. J. Agric. Food Chem. 2000, 48, 4565–4570. [Google Scholar] [CrossRef]
- Alam, F.; Mohammadin, K.; Shafique, Z.; Amjad, S.T.; bin Asad, M.H.H. Citrus flavonoids as potential therapeutic agents: A review. Phytother. Res. 2022, 36, 1417–1441. [Google Scholar] [CrossRef]
- Mohammadi, N.; Guo, Y.; Wang, K.; Granato, D. Macroporous resin purification of phenolics from Irish apple pomace: Chemical characterization, and cellular antioxidant and anti-inflammatory activities. Food Chem. 2024, 437, 137815. [Google Scholar] [CrossRef] [PubMed]
- Cano-Lou, J.; Millán-Laleona, A.; Candrea, R.; Les, F.; Pina, A.; Caprioli, G.; López, V. Apple peels as an edible source of phenolic bioactive compounds with antidiabetic and antiglycation properties. Food Funct. 2025, 16, 2947–2958. [Google Scholar] [CrossRef] [PubMed]
- Bowen-Forbes, C.; Armstrong, E.; Moses, A.; Fahlman, R.; Koosha, H.; Yager, J.Y. Broccoli, Kale, and radish sprouts: Key phytochemical constituents and DPPH free radical scavenging activity. Molecules 2023, 28, 4266. [Google Scholar] [CrossRef] [PubMed]
- Nuutila, A.-M.; Kammiovirta, K.; Oksman-Caldentey, K.M. Comparison of methods for the hydrolysis of flavonoids and phenolic acids from onion and spinach for HPLC analysis. Food Chem. 2002, 76, 519–525. [Google Scholar] [CrossRef]
- Delgado, Y.; Cassé, C.; Ferrer-Acosta, Y.; Suárez-Arroyo, I.J.; Rodríguez-Zayas, J.; Torres, A.; Torres-Martínez, Z.; Pérez, D.; González, M.J.; Velázquez-Aponte, R.A.; et al. Biomedical effects of the phytonutrients turmeric, garlic, cinnamon, graviola, and oregano: A comprehensive review. Appl. Sci. 2021, 11, 8477. [Google Scholar] [CrossRef]
- Ho, S.C.; Chang, P.W. Inhibitory effects of several spices on inflammation caused by advanced glycation endproducts. Am. J. Plant Sci. 2012, 3(7A), 998–1002. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Munekata, P.E.S. Phenolic compounds of green tea: Health benefits and technological application in food. Asian Pac. J. Trop. Biomed. 2016, 6, 709–719. [Google Scholar] [CrossRef]
- Aboul-Enein, H.Y.; Kruk, I.; Kładna, A.; Lichszteld, K.; Michalska, T. Scavenging effects of phenolic compounds on reactive oxygen species. Orig. Res. Biomol. 2007, 86, 222–230. [Google Scholar] [CrossRef]
- Zamora, R.; Hidalgo, F.J. The triple defensive barrier of phenolic compounds against the lipid oxidation-induced damage in food products. Trends Food Sci. Technol. 2016, 54, 165–174. [Google Scholar] [CrossRef]
- Pannucci, E.; Spagnuolo, L.; De Gara, L.; Santi, L.; Dugo, L. Phenolic compounds as preventive and therapeutic agents in Diabetes-Related oxidative stress, inflammation, advanced glycation End-Products production and insulin sensitivity. Discov. Med. 2023, 35, 715–732. [Google Scholar] [CrossRef]
- Shah, S.; Narang, R.; Singh, V.J.; Pilli, G.; Nayak, S.K. A review on anticancer profile of flavonoids: Sources, chemistry, mechanisms, structure-activity relationship and anticancer activity. Curr. Drug Res. Rev. 2023, 15, 122–148. [Google Scholar] [CrossRef]
- Zatterale, F.; Longo, M.; Naderi, J.; Raciti, G.A.; Desiderio, A.; Miele, C.; Beguinot, F. Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes. Front. Physiol. 2020, 10, 1607. [Google Scholar] [CrossRef]
- Wieser, V.; Moschen, A.R.; Tilg, H. Inflammation, cytokines and insulin resistance: A clinical perspective. Arch. Immunol. Et Ther. Exp. 2013, 61, 119–125. [Google Scholar] [CrossRef]
- Pal, P.P.; Begum, A.S.; Basha, S.A.; Araya, H.; Fujimoto, Y. New natural pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) and iNOS inhibitors identified from Penicillium polonicum through in vitro and in vivo studies. Int. Immunopharmacol. 2023, 117, 109940. [Google Scholar]
- Meng, T.; Xiao, D.; Muhammed, A.; Deng, J.; Chen, L.; He, J. Anti-inflammatory action and mechanisms of resveratrol. Molecules 2021, 26, 229. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Gonzalez, A.I.; Díaz-Sánchez, Á.G.; de la Rosa, L.A.; Vargas-Requena, C.L.; Bustos-Jaimes, I.; Alvarez-Parrilla, E. Polyphenolic compounds and digestive enzymes: In vitro non-covalent interactions. Molecules 2017, 22, 669. [Google Scholar] [CrossRef] [PubMed]
- Teng, J.; Hu, X.; Tao, N.; Wang, M. Impact and inhibitory mechanism of phenolic compounds on the formation of toxic Maillard reaction products in food. Front. Agric. Sci. Eng. 2018, 5, 321–329. [Google Scholar] [CrossRef]
- Rungratanawanich, W.; Qu, Y.; Wang, X.; Essa, M.M.; Song, B.-J. Advanced glycation end products (AGEs) and other adducts in aging-related diseases and alcohol-mediated tissue injury. Exp. Mol. Med. 2021, 53, 168–188. [Google Scholar] [CrossRef]
- Fukutomi, R.; Ohishi, T.; Koyama, Y.; Pervin, M.; Nakamura, Y.; Isemura, M. Beneficial effects of epigallocatechin-3-O-gallate, chlorogenic acid, resveratrol, and curcumin on neurodegenerative diseases. Molecules 2021, 26, 415. [Google Scholar] [CrossRef]
- Kim, J.; Jeong, I.-H.; Kim, C.-S.; Lee, Y.M.; Kim, J.M.; Kim, J.S. Chlorogenic acid inhibits the formation of advanced glycation end products and associated protein cross-linking. Arch. Pharmacal Res. 2011, 34, 495–500. [Google Scholar] [CrossRef]
- Alizadeh, M.; Kheirouri, S. Curcumin against advanced glycation end products (AGEs) and AGEs-induced detrimental agents. Crit. Rev. Food Sci. Nutr. 2019, 59, 1169–1177. [Google Scholar] [CrossRef]
- Markiewicz, E.; Jerome, J.; Mammone, T.; Idowu, O.C. Anti-glycation and anti-aging properties of resveratrol derivatives in the in-vitro 3D models of human skin. Clin. Cosmet. Investig. Dermatol. 2022, ume 15, 911–927. [Google Scholar] [CrossRef]
- Foti, M.C. Antioxidant properties of phenols. J. Pharm. Pharmacol. 2007, 59, 1673–1685. [Google Scholar] [CrossRef]
- Rice-Evans, C.; Miller, N.; Paganga, G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 1997, 2, 152–159. [Google Scholar] [CrossRef]
- Schalkwijk, C.G.; Stehouwer, C.D.A. Methylglyoxal, a highly reactive dicarbonyl compound, in diabetes, its vascular complications, and other age-related diseases. Physiol. Rev. 2020, 100, 407–461. [Google Scholar] [CrossRef] [PubMed]
- Fecka, I.; Bednarska, K.; Kowalczyk, A. In vitro antiglycation and methylglyoxal trapping effect of peppermint leaf (Mentha × piperita L.) and its polyphenols. Molecules 2023, 28, 2865. [Google Scholar] [CrossRef]
- Zhou, R.; Zhu, X.; Xie, T.; Li, W.; Xie, D.; Zhang, G.; Xiao, Y.; Zhang, L. Amadori compounds (N-(1-Deoxy-D-fructos-1-yl)-amino acid): The natural transition metal ions (Cu2+, Fe2+, Zn2+) chelators formed during food processing. LWT 2024, 191, 115600. [Google Scholar] [CrossRef]
- Bhuiyan, M.N.I.; Mitsuhashi, S.; Sigetomi, K.; Ubukata, M. Quercetin inhibits advanced glycation end product formation via chelating metal ions, trapping methylglyoxal, and trapping reactive oxygen species. Biosci. Biotechnol. Biochem. 2017, 81, 882–890. [Google Scholar] [CrossRef] [PubMed]
- Saeed, M.; Kausar, M.A.; Singh, R.; Siddiqui, A.J.; Akhter, A. The role of glyoxalase in glycation and carbonyl stress induced metabolic disorders. Curr. Protein Pept. Sci. 2020, 21, 846–859. [Google Scholar] [CrossRef]
- Zhu, X.; Cheng, Y.-q.; Lu, Q.; Du, L.; Yin, X.-x.; Liu, Y.-w. Enhancement of glyoxalase 1, a polyfunctional defense enzyme, by quercetin in the brain in streptozotocin-induced diabetic rats. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2018, 391, 1237–1245. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, B.; Ferreira, C.; Alves Passos, C.L.; Silva, J.L.; Fialho, E. Resveratrol, curcumin and piperine alter human glyoxalase 1 in MCF-7 breast cancer cells. Int. J. Mol. Sci. 2020, 21, 5244. [Google Scholar] [CrossRef]
- Laus, M.N.; Blando, F.; Soccio, M. Glyoxalase I assay as a possible tool for evaluation of biological activity of antioxidant-rich plant extracts. Plants 2023, 12, 1150. [Google Scholar] [CrossRef]
- Elmazoglu, Z.; Bek, Z.A.; Sarıbaş, G.S.; Özoğul, C.; Goker, B.; Bitik, B.; Aktekin, C.N.; Karasu, Ç. TLR4, Rage, and p-JNK/JNK mediated inflammatory aggression in osteoathritic human chondrocytes are counteracted by redox-sensitive phenolic olive compounds: Comparison with ibuprofen. J. Tissue Eng. Regen. Med. 2020, 14, 1841–1857. [Google Scholar]
- Endale, M.; Park, S.-C.; Kim, S.; Kim, S.-H.; Yang, Y.; Cho, J.Y.; Rhee, M.H. Quercetin disrupts tyrosine-phosphorylated phosphatidylinositol 3-kinase and myeloid differentiation factor-88 association, and inhibits MAPK/AP-1 and IKK/NF-κB-induced inflammatory mediators production in RAW 264.7 cells. Immunobiology 2013, 218, 1452–1467. [Google Scholar]
- Yang, Y.; Chen, Z.; Zhao, X.; Xie, H.; Du, L.; Gao, H.; Xie, C. Mechanisms of Kaempferol in the treatment of diabetes: A comprehensive and latest review. Front. Endocrinol. 2022, 13, 990299. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Lee, E.K.; Kim, D.H.; Yu, B.P.; Chung, H.Y. Kaempferol modulates pro-inflammatory NF-κB activation by suppressing advanced glycation endproducts-induced NADPH oxidase. Age 2010, 32, 197–208. [Google Scholar] [CrossRef]
- Gao, Q.; Ma, R.; Shi, L.; Wang, S.; Liang, Y.; Zhang, Z. Anti-glycation and anti-inflammatory activities of anthocyanins from purple vegetables. Food Funct. 2023, 14, 2034–2044. [Google Scholar] [PubMed]
- Jeong, J.-W.; Lee, W.S.; Shin, S.C.; Kim, G.-Y.; Choi, B.T.; Choi, Y.H. Anthocyanins downregulate lipopolysaccharide-induced inflammatory responses in BV2 microglial cells by suppressing the NF-κB and Akt/MAPKs signaling pathways. Int. J. Mol. Sci. 2013, 14, 1502–1515. [Google Scholar]
- Peng, X.; Wu, G.; Zhao, A.; Huang, K.; Chai, L.; Natarajan, B.; Yang, S.; Chen, H.; Lin, C. Synthesis of novel caffeic acid derivatives and their protective effect against hydrogen peroxide induced oxidative stress via Nrf2 pathway. Life Sci. 2020, 247, 117439. [Google Scholar] [CrossRef]
- Sompong, W.; Cheng, H.; Adisakwattana, S. Ferulic acid prevents methylglyoxal-induced protein glycation, DNA damage, and apoptosis in pancreatic β-cells. J. Physiol. Biochem. 2017, 73, 121–131. [Google Scholar]
- Li, L.; Liu, R.; Meng, X.; Xu, Z.; Liu, S.; Liu, J.; Zhang, Y.; Wang, H. Higher inhibition of caffeic acid than chlorogenic acid against methylglyoxal and advanced glycosylation end products induced oxidative damage. Food Sci. Hum. Wellness 2024. [Google Scholar] [CrossRef]
- Pilar, B.; Güllich, A.; Oliveira, P.; Ströher, D.; Piccoli, J.; Manfredini, V. Protective role of flaxseed oil and flaxseed lignan secoisolariciresinol diglucoside against oxidative stress in rats with metabolic syndrome. J. Food Sci. 2017, 82, 3029–3036. [Google Scholar] [CrossRef]
- Wang, Y.; Fofana, B.; Roy, M.; Ghose, K.; Yao, X.-H.; Nixon, M.-S.; Nair, S.; Nyomba, G.B.L. Flaxseed lignan secoisolariciresinol diglucoside improves insulin sensitivity through upregulation of GLUT4 expression in diet-induced obese mice. J. Funct. Foods 2015, 18, 1–9. [Google Scholar] [CrossRef]
- Sun, C.; McIntyre, K.; Saleem, A.; Haddad, P.S.; Arnason, J.T. The relationship between antiglycation activity and procyanidin and phenolic content in commercial grape seed products. Can. J. Physiol. Pharmacol. 2012, 90, 167–174. [Google Scholar] [CrossRef]
- Intagliata, S.; Spadaro, A.; Lorenti, M.; Panico, A.; Siciliano, E.A.; Barbagallo, S.; Macaluso, B.; Kamble, S.H.; Modica, M.N.; Montenegro, L. In vitro antioxidant and anti-glycation activity of resveratrol and its novel triester with trolox. Antioxidants 2020, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- De Souza, J.E.; Casanova, L.M.; Costa, S.S. Bioavailability of phenolic compounds: A major challenge for drug development? Rev. Fitos 2015, 9, 55–67. [Google Scholar]
- Hussain, M.B.; Hassan, S.; Waheed, M.; Javed, A.; Farooq, M.A.; Tahir, A. Bioavailability and metabolic pathway of phenolic compounds. In Plant Physiological Aspects of Phenolic Compounds; IntechOpen: Vienna, Austria, 2019. [Google Scholar]
- Chen, L.; Cao, H.; Xiao, J. metabolomics. In Polyphenols: Properties, Recovery, and Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 45–67. [Google Scholar]
- Domínguez-Avila, J.A.; Wall-Medrano, A.; Velderrain-Rodríguez, G.R.; Chen, C.Y.O.; Salazar-López, N.J.; Robles-Sánchez, M.; González-Aguilar, G.A. Gastrointestinal interactions, absorption, splanchnic metabolism and pharmacokinetics of orally ingested phenolic compounds. Food Funct. 2017, 8, 15–38. [Google Scholar] [CrossRef]
- Madureira, A.R.; Pereira, A.; Pintado, M. Current state on the development of nanoparticles for use against bacterial gastrointestinal pathogens. Focus on chitosan nanoparticles loaded with phenolic compounds. Carbohydr. Polym. 2015, 130, 429–439. [Google Scholar] [CrossRef]
- Lafay, S.; Gil-Izquierdo, A. Bioavailability of phenolic acids. Phytochem. Rev. 2008, 7, 301–311. [Google Scholar] [CrossRef]
- Marathe, S.J.; Dedhia, N.; Singhal, R.S. Esterification of sugars and polyphenols with fatty acids: Techniques, bioactivities, and applications. Curr. Opin. Food Sci. 2022, 43, 163–173. [Google Scholar] [CrossRef]
- Murugesan, N.; Damodaran, C.P. Antioxidant activity of synergistic quercetin resveratrol. J. Mol. Chem. 2023, 3, 581. [Google Scholar]
- Nishimoto-Sauceda, D.; Romero-Robles, L.E.; Antunes-Ricardo, M. Biopolymer nanoparticles: A strategy to enhance stability, bioavailability, and biological effects of phenolic compounds as functional ingredients. J. Sci. Food Agric. 2022, 102, 41–52. [Google Scholar] [CrossRef]
- Menon, V.P.; Sudheer, A.R. Antioxidant and anti-inflammatory properties of curcumin. In The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease; Springer: Berlin/Heidelberg, Germany, 2007; Volume 595, pp. 105–125. [Google Scholar]
- Guo, Q.; Li, F.; Duan, Y.; Wen, C.; Wang, W.; Zhang, L.; Huang, R.; Yin, Y. Oxidative stress, nutritional antioxidants and beyond. Sci. China Life Sci. 2020, 63, 866–874. [Google Scholar] [CrossRef] [PubMed]
- Dandona, P.; Chaudhuri, A.; Ghanim, H.; Mohanty, P. Anti-inflammatory effects of insulin and the pro-inflammatory effects of glucose. Semin. Thorac. Cardiovasc. Surg. 2006, 18, 293–301. [Google Scholar] [CrossRef]
- Chojnacka, K.; Lewandowska, U. Inhibition of pro-inflammatory cytokine secretion by polyphenol-rich extracts in macrophages via NF-κB pathway. Food Rev. Int. 2023, 39, 5459–5478. [Google Scholar] [CrossRef]
- Shen, C.-Y.; Jiang, J.-G.; Huang, C.-L.; Zhu, W.; Zheng, C.-Y. Polyphenols from blossoms of Citrus aurantium L. var. amara Engl. show significant anti-complement and anti-inflammatory effects. J. Agric. Food Chem. 2017, 65, 9061–9068. [Google Scholar] [CrossRef]
- Hämäläinen, M.; Nieminen, R.; Vuorela, P.; Heinonen, M.; Moilanen, E. Anti-inflammatory effects of flavonoids: Genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-κB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-κB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediat. Inflamm. 2007, 2007, 045673. [Google Scholar]
- Del Turco, S.; Basta, G. Can dietary polyphenols prevent the formation of toxic compounds from Maillard reaction? Curr. Drug Metab. 2016, 17, 598–607. [Google Scholar] [CrossRef]
- Piwowar, A.; Rorbach-Dolata, A.; Fecka, I. The antiglycoxidative ability of selected phenolic compounds—An in vitro study. Molecules 2019, 24, 2689. [Google Scholar] [CrossRef] [PubMed]
- Yeh, W.-J.; Hsia, S.-M.; Lee, W.-H.; Wu, C.-H. Polyphenols with antiglycation activity and mechanisms of action: A review of recent findings. J. Food Drug Anal. 2017, 25, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.; Ouyang, J.; Li, M.; Rengasamy, K.R.R.; Liu, Z. Effects of green tea polyphenol extract and epigallocatechin-3-O-gallate on diabetes mellitus and diabetic complications: Recent advances. Crit. Rev. Food Sci. Nutr. 2024, 64, 5719–5747. [Google Scholar] [CrossRef]
- Aryaeian, N.; Sedehi, S.K.; Arablou, T. Polyphenols and their effects on diabetes management: A review. Med. J. Islam. Repub. Iran 2017, 31, 134. [Google Scholar] [CrossRef]
- Sharma, S.; Kulkarni, S.K.; Chopra, K. Curcumin, the active principle of turmeric (Curcuma longa), ameliorates diabetic nephropathy in rats. Clin. Exp. Pharmacol. Physiol. 2006, 33, 940–945. [Google Scholar] [CrossRef]
- Xie, T.; Chen, X.; Chen, W.; Huang, S.; Peng, X.; Tian, L.; Wu, X.; Huang, Y. Curcumin is a potential adjuvant to alleviates diabetic retinal injury via reducing oxidative stress and maintaining Nrf2 pathway homeostasis. Front. Pharmacol. 2021, 12, 796565. [Google Scholar] [CrossRef]
- Chethan, S.; Dharmesh, S.M.; Malleshi, N.G. Inhibition of aldose reductase from cataracted eye lenses by finger millet (Eleusine coracana) polyphenols. Bioorganic Med. Chem. 2008, 16, 10085–10090. [Google Scholar] [CrossRef]
- Boccellino, M.; Donniacuo, M.; Bruno, F.; Rinaldi, B.; Quagliuolo, L.; Ambruosi, M.; Pace, S.; De Rosa, M.; Olgaç, A.; Banoglu, E.; et al. Protective effect of piceatannol and bioactive stilbene derivatives against hypoxia-induced toxicity in H9c2 cardiomyocytes and structural elucidation as 5-LOX inhibitors. Eur. J. Med. Chem. 2019, 180, 637–647. [Google Scholar] [CrossRef]
- Balea, Ş.S.; Parvu, A.E.; Pop, N.; Marín, F.Z.; Parvu, M. Polyphenolic compounds, antioxidant, and cardioprotective effects of pomace extracts from Fetească neagră cultivar. Oxidative Med. Cell. Longev. 2018, 2018, 8194721. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Wedick, N.M.; Tworoger, S.S.; Pan, A.; Townsend, M.K.; Cassidy, A.; Franke, A.A.; Rimm, E.B.; Hu, F.B.; Van Dam, R.M. Urinary excretion of select dietary polyphenol metabolites is associated with a lower risk of type 2 diabetes in proximate but not remote follow-up in a prospective investigation in 2 cohorts of US women. J. Nutr. 2015, 145, 1280–1288. [Google Scholar] [CrossRef] [PubMed]
- Tapola, N.; Törrönen, R.; Sarkkinen, E. Berries modify the postprandial plasma glucose response to sucrose in healthy subjects. Br. J. Nutr. 2009, 103, 1094–1097. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.-S.; Wang, W.-Y.; Fan, W.-Y.; Deng, Q.; Wang, X. Tea consumption and risk of type 2 diabetes: A dose–response meta-analysis of cohort studies. Br. J. Nutr. 2014, 111, 1329–1339. [Google Scholar] [CrossRef]
- Paquette, M.; Larqué, A.S.M.; Weisnagel, S.J.; Desjardins, Y.; Marois, J.; Pilon, G.; Dudonné, S.; Marette, A.; Jacques, H. Strawberry and cranberry polyphenols improve insulin sensitivity in insulin-resistant, non-diabetic adults: A parallel, double-blind, controlled and randomised clinical trial. Br. J. Nutr. 2017, 117, 519–531. [Google Scholar] [CrossRef]
- Mahjabeen, W.; Khan, D.A.; Mirza, S.A. Role of resveratrol supplementation in regulation of glucose hemostasis, inflammation and oxidative stress in patients with diabetes mellitus type 2: A randomized, placebo-controlled trial. Complement. Ther. Med. 2022, 66, 102819. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.; Weickert, M.O.; Qureshi, S.; Kandala, N.-B.; Anwar, A.; Waldron, M.; Shafie, A.; Messenger, D.; Fowler, M.; Jenkins, G.; et al. Improved glycemic control and vascular function in overweight and obese subjects by glyoxalase 1 inducer formulation. Diabetes 2016, 65, 2282–2294. [Google Scholar] [CrossRef]
- Lin, D.; Xiao, M.; Zhao, J.; Li, Z.; Xing, B.; Li, X.; Kong, M.; Li, L.; Zhang, Q.; Liu, Y.; et al. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 2016, 21, 1374. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Ou, J.; Chen, L.; Zhang, Y.; Szkudelski, T.; Delmas, D.; Daglia, M.; Xiao, J. Dietary polyphenols and type 2 diabetes: Human Study and Clinical Trial. Crit. Rev. Food Sci. Nutr. 2019, 59, 3371–3379. [Google Scholar] [CrossRef] [PubMed]
- Duda-Chodak, A.; Tarko, T. Possible Side Effects of Polyphenols and Their Interactions with Medicines. Molecules 2023, 28, 2536. [Google Scholar] [CrossRef]
- Brudzynski, K.; Maldonado-Alvarez, L. Polyphenol-protein complexes and their consequences for the redox activity, structure and function of honey. A current view and new hypothesis-a review. Pol. J. Food Nutr. Sci. 2015, 65, 71–80. [Google Scholar] [CrossRef]
- Kim, E.-Y.; Ham, S.-K.; Shigenaga, M.K.; Han, O. Bioactive dietary polyphenolic compounds reduce nonheme iron transport across human intestinal cell monolayers. J. Nutr. 2008, 138, 1647–1651. [Google Scholar] [CrossRef]
- Sun, M.; Deng, Y.; Cao, X.; Xiao, L.; Ding, Q.; Luo, F.; Huang, P.; Gao, Y.; Liu, M.; Zhao, H. Effects of natural polyphenols on skin and hair health: A review. Molecules 2022, 27, 7832. [Google Scholar] [CrossRef]
- Andrés, C.M.C.; Pérez de la Lastra, J.M.; Juan, C.A.; Plou, F.J.; Pérez-Lebeña, E. Polyphenols as antioxidant/pro-oxidant compounds and donors of reducing species: Relationship with human antioxidant metabolism. Processes 2023, 11, 2771. [Google Scholar] [CrossRef]
- Basheer, L.; Kerem, Z. Interactions between CYP3A4 and dietary polyphenols. Oxidative Med. Cell. Longev. 2015, 2015, 854015. [Google Scholar] [CrossRef]
- Li, Y.; Trush, M.A. Reactive oxygen-dependent DNA damage resulting from the oxidation of phenolic compounds by a copper-redox cycle mechanism. Cancer Res. 1994, 54, 1895s–1898s. [Google Scholar]
- Alaparthi, M.D.; Gopinath, G.; Bandaru, S.; Sankeshi, V.; Mangalarapu, M.; Nagamalla, S.S.; Sudhakar, K.; Rani, A.R.; Sagurthi, S.R. Virtual screening of RAGE inhibitors using molecular docking. Bioinformation 2016, 12, 124. [Google Scholar] [CrossRef]
- Li, H.; Dong, A.; Li, N.; Ma, Y.; Zhang, S.; Deng, Y.; Chen, S.; Zhang, M. Mechanistic study of Schisandra chinensis fruit mixture based on network pharmacology, molecular docking and experimental validation to improve the inflammatory response of DKD through AGEs/RAGE signaling pathway. Drug Des. Dev. Ther. 2023, ume 17, 613–632. [Google Scholar] [CrossRef]
- Manchalkar, M.; Patil, C.C. Computational Approaches To Phytochemical Drug Discovery: Bridging Plant Genomics And Pharmaceutical Chemistry. In Botanical Insights: From Traditional Knowledge to Modern Science; Nature Light Publication: New York, NY, USA, 2025; p. 19. [Google Scholar]
- Wang, W.; Zhao, W.; Song, X.; Wang, H.; Gu, L. Zhongfeng decoction attenuates cerebral ischemia-reperfusion injury by inhibiting autophagy via regulating the AGE-RAGE signaling pathway. J. Ethnopharmacol. 2025, 336, 118718. [Google Scholar] [CrossRef]
- Guedes, I.A.; de Magalhães, C.S.; Dardenne, L.E. Receptor–ligand molecular docking. Biophys. Rev. 2014, 6, 75–87. [Google Scholar] [CrossRef]
- Muthyalaiah, Y.S.; Arockiasamy, S.; Abhinand, P.A. Exploring the molecular interactions and binding affinity of resveratrol and calcitriol with RAGE and its intracellular proteins and kinases involved in colorectal cancer. J. Biomol. Struct. Dyn. 2024, 42, 10800–10823. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Xian, W.; Li, X.; Chen, Y.; Geng, J.; Wang, Q.; Gao, Q.; Tang, B.; Wang, H.; Kang, P. Mechanisms of Quercetin against atrial fibrillation explored by network pharmacology combined with molecular docking and experimental validation. Sci. Rep. 2022, 12, 9777. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Shen, J.; Zhan, J.; Guo, L.; Ho, C.-T.; Li, S. Antiglycating effects of citrus flavonoids and associated mechanisms. Food Sci. Hum. Wellness 2024, 13, 2363–2372. [Google Scholar] [CrossRef]
- Badar, M.S.; Shamsi, S.; Ahmed, J.; Alam, M.A. Molecular dynamics simulations: Concept, methods, and applications. In Transdisciplinarity; Springer: Berlin/Heidelberg, Germany, 2022; pp. 131–151. [Google Scholar]
- De Vivo, M.; Masetti, M.; Bottegoni, G.; Cavalli, A. Role of molecular dynamics and related methods in drug discovery. J. Med. Chem. 2016, 59, 4035–4061. [Google Scholar] [CrossRef]
- Liao, S.-M.; Shen, N.-K.; Liang, G.; Lu, B.; Lu, Z.-L.; Peng, L.-X.; Zhou, F.; Du, L.-Q.; Wei, Y.-T.; Zhou, G.-P.; et al. Inhibition of α-amylase activity by Zn2+: Insights from spectroscopy and molecular dynamics simulations. Med. Chem. 2019, 15, 510–520. [Google Scholar] [CrossRef]
- Nageswari, P.; Swathi, K. In silico docking and Molecular Dynamic (MD) simulations studies of selected phytochemicals against Human Glycolate Oxidase (hGOX) and Oxalate oxidase (OxO). Drug Res. 2023, 73, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Yuan, P.; Chen, W.; Wang, X.; Li, L.; Peng, Z.; Mu, S.; You, M.; Xu, H. RAGE: A potential target for Epimedium’s anti-neuroinflammation role in vascular dementia—Insights from network pharmacology and molecular simulation. J. Biomol. Struct. Dyn. 2024, 42, 10856–10875. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, Y.; Li, W.; Zhao, X.; Zhang, M.; Wang, M.; Xie, J. Effects and mechanisms of dietary polyphenols in ameliorating glycolipid metabolic disorders: Inhibition of advanced glycation end products. Fitoterapia 2025, 184, 106668. [Google Scholar] [CrossRef]
- Leung, E.L.; Cao, Z.-W.; Jiang, Z.-H.; Zhou, H.; Liu, L. Network-based drug discovery by integrating systems biology and computational technologies. Brief. Bioinform. 2013, 14, 491–505. [Google Scholar] [CrossRef]
- Arrell, D.K.; Terzic, A. Network systems biology for drug discovery. Clin. Pharmacol. Ther. 2010, 88, 120–125. [Google Scholar] [CrossRef]
- Zhao, S.; Iyengar, R. Systems pharmacology: Network analysis to identify multiscale mechanisms of drug action. Annu. Rev. Pharmacol. Toxicol. 2012, 52, 505–521. [Google Scholar] [CrossRef]
- Berger, S.I.; Iyengar, R. Network analyses in systems pharmacology. Bioinformatics 2009, 25, 2466–2472. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Wang, J.; Jia, N.; Sun, Q. A network pharmacology study on mechanism of resveratrol in treating preeclampsia via regulation of AGE-RAGE and HIF-1 signalling pathways. Front. Endocrinol. 2023, 13, 1044775. [Google Scholar] [CrossRef]
- Liu, T.-h.; Tu, W.-q.; Tao, W.-c.; Liang, Q.-e.; Xiao, Y.; Chen, L.-g. Verification of Resveratrol Inhibits Intestinal Aging by Downregulating ATF4/Chop/Bcl-2/Bax Signaling Pathway: Based on Network Pharmacology and Animal Experiment. Front. Pharmacol. 2020, 11, 2020. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, J.; Wang, N.; Tan, H.-Y.; Zhang, C.; Li, S.; Tang, G.; Feng, Y. Network pharmacology–based analysis and experimental exploration of antidiabetic mechanisms of gegen Qinlian decoction. Front. Pharmacol. 2021, 12, 649606. [Google Scholar] [CrossRef]
- Peng, W.; Yang, Y.; Lu, H.; Shi, H.; Jiang, L.; Liao, X.; Zhao, H.; Wang, W.; Liu, J. Network pharmacology combines machine learning, molecular simulation dynamics and experimental validation to explore the mechanism of acetylbinankadsurin A in the treatment of liver fibrosis. J. Ethnopharmacol. 2024, 323, 117682. [Google Scholar] [CrossRef] [PubMed]
- Ekowati, J.; Tejo, B.A.; Maulana, S.; Kusuma, W.A.; Fatriani, R.; Ramadhanti, N.S.; Norhayati, N.; Nofianti, K.A.; Sulistyowaty, M.I.; Zubair, M.S.; et al. Potential utilization of phenolic acid compounds as anti-inflammatory agents through TNF-α convertase inhibition mechanisms: A network pharmacology, docking, and molecular dynamics approach. Acs Omega 2023, 8, 46851–46868. [Google Scholar] [CrossRef]
- Wu, W.; Zheng, Z.; Wang, Z.; Gao, C.; Liang, Y.; Zeng, W.; Sun, W. Profiling of Potential Anti-Diabetic Active Compounds in White Tea: An Integrated Study of Polyphenol-Targeted Metabolomics, Network Pharmacology, and Computer Simulation. Foods 2024, 13, 3354. [Google Scholar] [CrossRef]
- Karnovsky, A.; Weymouth, T.; Hull, T.; Tarcea, V.G.; Scardoni, G.; Laudanna, C.; Sartor, M.A.; Stringer, K.A.; Jagadish, H.V.; Burant, C.; et al. Metscape 2 bioinformatics tool for the analysis and visualization of metabolomics and gene expression data. Bioinformatics 2012, 28, 373–380. [Google Scholar] [CrossRef]
- Koumakis, L.; Mizzi, C.; Potamias, G. Bioinformatics tools for data analysis. In Molecular Diagnostics; Elsevier: Amsterdam, The Netherlands, 2017; pp. 339–351. [Google Scholar]
- Wang, J.; Liu, H.; Xie, G.; Cai, W.; Xu, J. Identification of hub genes and key pathways of dietary advanced glycation end products-induced non-alcoholic fatty liver disease by bioinformatics analysis and animal experiments. Mol. Med. Rep. 2020, 21, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Qin, Z.; Bai, W.; Wang, S.; Huang, C.; Li, N.; Yan, L.; Gu, Y.; Shao, F. Integrating bioinformatics and machine learning to elucidate the role of protein glycosylation-related genes in the pathogenesis of diabetic kidney disease. PLoS ONE 2025, 20, e0329640. [Google Scholar] [CrossRef] [PubMed]
- Cheemanapalli, S.; Chinthakunta, N.; Shaikh, N.M.; Shivaranjani, V.; Pamuru, R.R.; Chitta, S.K. Comparative binding studies of curcumin and tangeretin on up-stream elements of NF-kB cascade: A combined molecular docking approach. Netw. Model. Anal. Health Inform. Bioinform. 2019, 8, 15. [Google Scholar] [CrossRef]
- Long, T.; Liu, Z.; Zhou, X.; Yu, S.; Tian, H.; Bao, Y. Identification of differentially expressed genes and enriched pathways in lung cancer using bioinformatics analysis. Mol. Med. Rep. 2019, 19, 2029–2040. [Google Scholar] [CrossRef]
- Cho, S.; Duong, V.-A.; Mok, J.-H.; Joo, M.; Park, J.-M.; Lee, H. Enrichment and analysis of glycated proteins. Rev. Anal. Chem. 2022, 41, 83–97. [Google Scholar] [CrossRef]
- Aryal, D.; Joshi, S.; Thapa, N.K.; Chaudhary, P.; Basaula, S.; Joshi, U.; Bhandari, D.; Rogers, H.M.; Bhattarai, S.; Sharma, K.R.; et al. Dietary phenolic compounds as promising therapeutic agents for diabetes and its complications: A comprehensive review. Food Sci. Nutr. 2024, 12, 3025–3045. [Google Scholar] [CrossRef]
- Ouamnina, A.; Alahyane, A.; Elateri, I.; Ouhammou, M.; Abderrazik, M. In vitro and molecular docking studies of Antiglycation potential of phenolic compounds in date palm (Phoenix dactylifera L.) fruit: Exploring local varieties in the food industry. Horticulturae 2024, 10, 657. [Google Scholar] [CrossRef]
- Akpoveso, O.-O.P.; Ubah, E.E.; Obasanmi, G. Antioxidant phytochemicals as potential therapy for diabetic complications. Antioxidants 2023, 12, 123. [Google Scholar] [CrossRef]
- Aalim, H.; Shishir, M.R.I.; Yosri, N.; Arslan, M.; Tahir, H.E.; Hashim, S.B.H.; Karim, N.; Zhai, X.; Li, Z.; Zhou, C.; et al. Systematic review of the digestive fate of rice phenolic compounds: Insights into bioavailability, influencing factors, encapsulation strategies, and health implications. Trends Food Sci. Technol. 2025, 156, 104833. [Google Scholar] [CrossRef]
- Alizadeh, S.R.; Savadkouhi, N.; Ebrahimzadeh, M.A. Drug design strategies that aim to improve the low solubility and poor bioavailability conundrum in quercetin derivatives. Expert Opin. Drug Discov. 2023, 18, 1117–1132. [Google Scholar] [CrossRef]
- Kannan, K.; George, J.A.; Sahadevan, R.; Kothari, M.; Sadhukhan, S. Insights into one drug, multi-target aspects of polyphenols for diabetes management: In vitro, in vivo, and clinical evidence. Phytochem. Rev. 2024, 1–49, In press. [Google Scholar] [CrossRef]
- Baptista, F.; Paié-Ribeiro, J.; Almeida, M.; Barros, A.N. Exploring the role of phenolic compounds in chronic kidney disease: A systematic review. Molecules 2024, 29, 2576. [Google Scholar] [CrossRef]
- Kozłowska, A.; Nitsch-Osuch, A. Anthocyanins and type 2 diabetes: An update of human study and clinical trial. Nutrients 2024, 16, 1674. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Tareq, A.M.; Das, R.; Emran, T.B.; Nainu, F.; Chakraborty, A.J.; Ahmad, I.; Tallei, T.E.; Idris, A.M.; Simal-Gandara, J. Polyphenols: A first evidence in the synergism and bioactivities. Food Rev. Int. 2023, 39, 4419–4441. [Google Scholar] [CrossRef]
- Grammatiki, M.; Sagar, R.; Ajjan, R.A. Metformin: Is it still the first line in type 2 diabetes management algorithm? Curr. Pharm. Des. 2021, 27, 1061–1067. [Google Scholar] [CrossRef] [PubMed]
- Vlavcheski, F.; Den Hartogh, D.J.; Giacca, A.; Tsiani, E. Amelioration of high-insulin-induced skeletal muscle cell insulin resistance by resveratrol is linked to activation of AMPK and restoration of GLUT4 translocation. Nutrients 2020, 12, 914. [Google Scholar] [CrossRef]
- Lv, W.; Wang, X.; Xu, Q.; Lu, W. Mechanisms and characteristics of sulfonylureas and glinides. Curr. Top. Med. Chem. 2020, 20, 37–56. [Google Scholar] [CrossRef] [PubMed]
S.No | Phenolic Compound | Diabetes Complication Addressed | No Key Findings | Methodology |
---|---|---|---|---|
1 | Quercetin | Diabetic Nephropathy | Prevents AGE accumulation, reduces oxidative stress, modulates RAGE signaling, enhances renal function | In vitro, Animal Model |
2 | Resveratrol | Diabetic Retinopathy | Reduces retinal edema, prevents vascular leakage, inhibits AGE formation, modulates AGE-RAGE signaling | In vivo, Animal Model, Clinical Trial |
3 | Curcumin | Diabetic Nephropathy | Inhibits AGE formation, reduces kidney damage, enhances antioxidant defenses, modulates RAGE signaling | In vivo, Animal Model, Clinical Trial |
4 | Chlorogenic Acid | Diabetic Complications | Inhibits glycation, reduces AGE formation, improves glycemic control, reduces oxidative stress | In vitro, Animal Model |
5 | Epigallocatechin-3-gallate (EGCG) | Diabetic Retinopathy | Inhibits AGE accumulation, reduces vascular leakage, prevents retinal damage, improves insulin sensitivity | In vivo, Clinical Trial |
6 | Punicalagin | Diabetic Nephropathy | Reduces oxidative stress and inflammation, protects renal function, inhibits AGE formation | In vitro, Animal Model |
7 | Gallic Acid | Diabetic Retinopathy, Cardiovascular Disease | Reduces ROS, inhibits AGE formation, modulates inflammatory cytokines | In vitro, Animal Model |
8 | Hesperidin | Diabetic Retinopathy | Reduces AGE-induced vascular damage, improves retinal function, modulates NF-κB pathway | In vitro, Animal Model |
9 | Naringin | Diabetic Nephropathy | Reduces AGE formation, alleviates renal damage, inhibits oxidative stress | In vivo, Animal Model |
10 | Curcumin | Cardiovascular Disease | Reduces oxidative stress, enhances endothelial function, inhibits AGE formation | In vivo, Clinical Trial |
Signaling Pathway | Concise Mechanism | Relevant Diabetic Complication | Citation |
---|---|---|---|
AGE/RAGE Signaling | AGEs bind to RAGE, triggering activation of NF-κB, MAPK, and PI3K/Akt, which causes inflammation, oxidative stress, and fibrosis. | Vascular damage, diabetic retinopathy, nephropathy, neuropathy, and atherosclerosis. | [89] |
NF-κB Activation | AGE binding to RAGE activates NF-κB, leading to the production of proinflammatory cytokines and adhesion molecules, promoting inflammation and endothelial dysfunction. | Diabetic vascular complications, retinopathy, nephropathy, atherosclerosis. | [90] |
MAPK Pathway | RAGE activation triggers MAPK signaling (ERK, JNK, p38), promoting inflammation, cell proliferation, and apoptosis, which causes vascular damage. | Diabetic vascular complications, diabetic nephropathy and neuropathy. | [91] |
PI3K/Akt Pathway | PI3K/Akt signaling, when overstimulated by AGEs, leads to oxidative stress, impaired glucose metabolism, and endothelial dysfunction. | Diabetic retinopathy, nephropathy, cardiovascular disease, atherosclerosis. | [] |
TGF-β Pathway | TGF-β activation induces fibrosis by promoting ECM deposition, contributing to vascular remodeling and kidney fibrosis. | Diabetic nephropathy, diabetic cardiovascular disease, fibrosis in various tissues. | [92] |
Oxidative Stress and ROS Production | AGEs induce ROS production, causing oxidative damage to proteins, lipids, and DNA, promoting endothelial dysfunction and vascular complications. | Diabetic retinopathy, nephropathy, neuropathy, and atherosclerosis. | [93] |
Endothelial Nitric Oxide Synthase (eNOS) | AGE-induced oxidative stress impairs eNOS activity, leading to reduced nitric oxide production and endothelial dysfunction. | Vascular complications, atherosclerosis, hypertension, diabetic retinopathy. | [94] |
NLRP3 Inflammasome Activation | AGEs activate the NLRP3 inflammasome, leading to inflammation and impaired tissue healing, exacerbating neuropathy and other complications. | Delayed wound healing, diabetic neuropathy, corneal damage, retinopathy. | [95] |
PKC Pathway | AGE-induced activation of PKC promotes cell proliferation and fibrosis, exacerbating vascular damage in diabetic tissues. | Diabetic nephropathy, diabetic cardiovascular disease, vascular complications. | [] |
Compound Class | Mechanism | Plant Source | Role in Diabetes and Advanced Glycation End Products | Mechanism | References |
---|---|---|---|---|---|
Flavonoids Quercetin | Anti-inflammatory: Modulates NF-κB, MAPK to reduce chronic inflammation. | Apples, onions, citrus fruits, broccoli | Improves insulin sensitivity, reduces blood sugar, and reduces oxidative stress. Inhibits AGE formation by reducing reactive carbonyl species like MGO. | Antioxidant: Scavenges free radicals to reduce oxidative stress. | [136] |
Inhibition of glycation: Reduces carbonyl stress by inhibiting MGO. | |||||
Insulin sensitivity improvement: Enhances insulin receptor signaling and glucose uptake. | |||||
Flavonoids Kaempferol | Insulin sensitizer: Improves insulin signaling and glucose metabolism. | Kale, spinach, broccoli | Reduces blood glucose levels, improves insulin sensitivity, and prevents diabetic complications like neuropathy. Prevents glycation of proteins and inhibits AGE formation. | Antioxidant: Scavenges free radicals, reducing oxidative damage. | [137,138] |
Inhibition of AGE formation: Reduces carbonyl stress and protein glycation. | |||||
Flavonoids Anthocyanins | Inhibition of AGE formation: Reduces glycation of proteins and carbonyl stress. | Blueberries, strawberries, grapes, red cabbage | Improves insulin sensitivity, lowers blood glucose, and has potent antioxidant properties. Inhibits AGE formation by neutralizing free radicals and reducing protein glycation. | Antioxidant: Scavenges ROS, reducing oxidative damage to endothelial cells. | [139,140] |
Anti-inflammatory: Modulates NF-κB and MAPK signaling to reduce inflammation. | |||||
Phenolic Acids Caffeic Acid | Inhibition of glycation: Reduces protein glycation and carbonyl stress. | Coffee, fruits, vegetables, sunflower seeds | Reduces blood glucose and modulates insulin secretion. Inhibits AGE formation by scavenging carbonyl species and preventing oxidative modifications of proteins. | Antioxidant: Scavenges ROS and RCS (reactive carbonyl species), reducing oxidative damage. | [141] |
Inhibition of AGE formation: Prevents glycation by decreasing carbonyl stress. | |||||
Ferulic Acid | Inhibition of AGE formation: Inhibits MGO-mediated glycation and reduces carbonyl stress. | Whole grains, rice, oats, barley, vegetables | Controls blood sugar levels, improves insulin sensitivity, and reduces inflammation. Inhibits AGE formation and prevents glycation of proteins, reducing AGE-induced complications. | Antioxidant: Scavenges free radicals, reducing oxidative stress. | [142,143] |
Anti-inflammatory: Modulates NF-κB to reduce chronic inflammation. | |||||
Lignans Secoisolariciresinol | Inhibition of AGE formation: Blocks protein glycation and reduces carbonyl stress, lowering AGE accumulation. | Flaxseeds, sesame seeds, whole grains | Improves insulin sensitivity, reduces oxidative stress, and protects against diabetic nephropathy. Inhibits AGE formation by blocking early stages of glycation and neutralizing ROS. | Antioxidant: Reduces ROS and RCS in diabetic tissues, protecting against oxidative damage. | [144,145] |
Insulin sensitivity: Modulates insulin receptor signaling pathways, improving glucose uptake. | |||||
Tannins Proanthocyanidins | Inhibition of AGE formation: Prevents protein glycation by reducing carbonyl stress and scavenging reactive carbonyls. | Red wine, cocoa, grapes, berries, apple skins | Reduces oxidative stress, improves blood sugar control, and has neuroprotective effects. Prevents AGE formation by reducing glycation and neutralizing free radicals. | Antioxidant: Scavenges ROS and protects endothelial cells from oxidative damage. | [146] |
Neuroprotective: Reduces inflammation in the nervous system, protecting against diabetic neuropathy. | |||||
Stilbenes | |||||
Resveratrol | Inhibition of AGE formation: Blocks AGE-RAGE signaling, reducing AGE-induced oxidative stress and vascular damage. | Red wine, grapes, peanuts | Improves insulin sensitivity, reduces blood glucose levels, and has anti-inflammatory properties. Inhibits AGE formation and reduces AGE-RAGE signaling, which is key in diabetes complications. | Antioxidant: Scavenges ROS, reducing oxidative stress in tissues. | [147] |
Insulin sensitization: Enhances insulin receptor activity, improving glucose uptake and metabolism. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaman, W.; Amin, A. Mechanistic Insight into Phenolic Compounds in Mitigating Diabetic Complications Induced by Advanced Glycation End Products. Curr. Issues Mol. Biol. 2025, 47, 841. https://doi.org/10.3390/cimb47100841
Zaman W, Amin A. Mechanistic Insight into Phenolic Compounds in Mitigating Diabetic Complications Induced by Advanced Glycation End Products. Current Issues in Molecular Biology. 2025; 47(10):841. https://doi.org/10.3390/cimb47100841
Chicago/Turabian StyleZaman, Wajid, and Adnan Amin. 2025. "Mechanistic Insight into Phenolic Compounds in Mitigating Diabetic Complications Induced by Advanced Glycation End Products" Current Issues in Molecular Biology 47, no. 10: 841. https://doi.org/10.3390/cimb47100841
APA StyleZaman, W., & Amin, A. (2025). Mechanistic Insight into Phenolic Compounds in Mitigating Diabetic Complications Induced by Advanced Glycation End Products. Current Issues in Molecular Biology, 47(10), 841. https://doi.org/10.3390/cimb47100841