Association Between Body Mass Index and the Composition of Leucocyte-Poor Platelet-Rich Plasma: Implications for Personalized Approaches in Musculoskeletal Medicine
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Cohort
2.2. Blood Sampling
2.3. LP-PRP Preparation, Hematological Profiling
2.4. Protein Quantification
2.5. Statistical Analysis
3. Results
3.1. BMI and Its Association with Whole Blood and LP-PRP Cellular Profiles
3.2. Growth Factor and Cytokine Levels in LP-PRP Stratified by BMI
3.3. BMI-Related Variations in Correlations Between Platelets and Proteins
3.4. BMI-Related Variations in Correlations Between Lifestyle or Demographic Parameters and PRP Proteins
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACR | American College of Rheumatology |
ANOVA | Analysis of Variance |
ASA | Acetylsalicylic Acid |
BMI | Body Mass Index |
DMARD | Disease-Modifying Anti-Rheumatic Drug |
DMOAD | Disease-Modifying Osteoarthritis Drug |
EDTA | Ethylenediaminetetraacetic Acid |
ELISA | Enzyme-Linked Immunosorbent Assay |
HGF | Hepatocyte Growth Factor |
IGF | Insulin-like Growth Factor |
IL | Interleukin |
IQR | Interquartile Range |
LP-PRP | Leukocyte-Poor Platelet-Rich Plasma |
LR-PRP | Leukocyte-Rich Platelet-Rich Plasma |
mL | milliliter |
MMP | Matrix Metalloproteinase |
nL | nanoliter |
NSAID | Non-Steroidal Anti-Inflammatory Drug |
OA | Osteoarthritis |
OARSI | Osteoarthritis Research Society International |
PDGF | Platelet-Derived Growth Factor |
pg | picogram |
PRP | Platelet-Rich Plasma |
SD | Standard Deviation |
SPSS | Statistical Package for the Social Sciences |
WHO | World Health Organization |
References
- Miroshnychenko, O.; Chalkley, R.J.; Leib, R.D.; Everts, P.A.; Dragoo, J.L. Proteomic analysis of platelet-rich and platelet-poor plasma. Regen. Ther. 2020, 15, 226–235. [Google Scholar] [CrossRef]
- Tischer, T.; Bode, G.; Buhs, M.; Marquass, B.; Nehrer, S.; Vogt, S.; Zinser, W.; Angele, P.; Spahn, G.; Welsch, G.H.; et al. Platelet-rich plasma (PRP) as therapy for cartilage, tendon and muscle damage—German working group position statement. J. Exp. Orthop. 2020, 7, 64. [Google Scholar] [CrossRef]
- GBDO Collaborators. Global, regional, and national burden of osteoarthritis, 1990–2020 and projections to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023, 5, e508–e522. [Google Scholar] [CrossRef]
- Kaye, A.D.; Boullion, J.A.; Abdelsalam, M.; Green, M.A.; Nguyen, A.; MacDonald, E.M.; Dastgah, M.; Ballaera, C.; Ahmadzadeh, S.; Ii, G.M.; et al. Efficacy of intra-articular platelet-rich plasma injections in treatment of knee osteoarthritis: A systematic review and meta-analysis. Curr. Pain Headache Rep. 2025, 29, 13. [Google Scholar] [CrossRef]
- Bennell, K.L.; Paterson, K.L.; Metcalf, B.R.; Duong, V.; Eyles, J.; Kasza, J.; Wang, Y.; Cicuttini, F.; Buchbinder, R.; Forbes, A.; et al. Effect of intra-articular platelet-rich plasma vs placebo injection on pain and medial tibial cartilage volume in patients with knee osteoarthritis: The RESTORE randomized clinical trial. JAMA 2021, 326, 2021–2030. [Google Scholar] [CrossRef]
- Pereira, T.V.; Saadat, P.; Bobos, P.; Iskander, S.M.; Bodmer, N.S.; Rudnicki, M.; Kiyomoto, H.D.; Montezuma, T.; Almeida, M.O.; Bansal, R.; et al. Effectiveness and safety of intra-articular interventions for knee and hip osteoarthritis based on large randomized trials: A systematic review and network meta-analysis. Osteoarthr. Cartil. 2025, 33, 207–217. [Google Scholar] [CrossRef]
- Bensa, A.; Sangiorgio, A.; Boffa, A.; Salerno, M.; Moraca, G.; Filardo, G. Corticosteroid injections for knee osteoarthritis offer clinical benefits similar to hyaluronic acid and lower than platelet-rich plasma: A systematic review and meta-analysis. EFORT Open Rev. 2024, 9, 883–895. [Google Scholar] [CrossRef]
- Singh, H.; Knapik, D.M.; Polce, E.M.; Eikani, C.K.; Bjornstad, A.H.; Gursoy, S.; Perry, A.K.; Westrick, J.C.; Yanke, A.B.; Verma, N.N.; et al. Relative efficacy of intra-articular injections in the treatment of knee osteoarthritis: A systematic review and network meta-analysis. Am. J. Sports Med. 2022, 50, 3140–3148. [Google Scholar] [CrossRef]
- Cruciani, M.; Franchini, M.; Mengoli, C.; Marano, G.; Pati, I.; Masiello, F.; Profili, S.; Veropalumbo, E.; Pupella, S.; Vaglio, S.; et al. Platelet-rich plasma for sports-related muscle, tendon and ligament injuries: An umbrella review. Blood Transfus. 2019, 17, 465–478. [Google Scholar] [CrossRef]
- Gibbs, A.J.; Gray, B.; Wallis, J.A.; Taylor, N.F.; Kemp, J.L.; Hunter, D.J.; Barton, C.J. Recommendations for the management of hip and knee osteoarthritis: A systematic review of clinical practice guidelines. Osteoarthr. Cartil. 2023, 31, 1280–1292. [Google Scholar] [CrossRef]
- Cao, Y.; Cai, R.; Han, S.; Li, Z.; Ma, K.; Zhou, Z.; Wen, X.; Qi, W.; Cen, H.; Han, W.; et al. Quantitative analysis of the efficacy and associated factors of intra-articular hyaluronic acid with respect to osteoarthritis symptoms: A systematic review of randomized trials and model-based meta-analysis. Osteoarthr. Cartil. 2025, 33, 666–679. [Google Scholar] [CrossRef] [PubMed]
- Pachito, D.V.; Bagattini, Â.M.; de Almeida, A.M.; Mendrone-Júnior, A.; Riera, R. Technical procedures for preparation and administration of platelet-rich plasma and related products: A scoping review. Front. Cell Dev. Biol. 2020, 8, 598816. [Google Scholar] [CrossRef] [PubMed]
- Xiong, G.; Lingampalli, N.; Koltsov, J.C.; Leung, L.L.; Bhutani, N.; Robinson, W.H.; Chu, C.R. Men and women differ in the biochemical composition of platelet-rich plasma. Am. J. Sports Med. 2018, 46, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Evanson, J.R.; Guyton, M.K.; Oliver, D.L.; Hire, J.M.; Topolski, R.L.; Zumbrun, S.D.; McPherson, J.C.; Bojescul, J.A. Gender and age differences in growth factor concentrations from platelet-rich plasma in adults. Mil. Med. 2014, 179, 799–805. [Google Scholar] [CrossRef]
- Purdy, J.C.; Shatzel, J.J. The hematologic consequences of obesity. Eur. J. Haematol. 2021, 106, 306–319. [Google Scholar] [CrossRef]
- Prost, D.; Bardot, T.; Baud, A.; Calvo, A.; Aumont, S.; Collado, H.; Borne, J.; Rajon, O.; Ponsot, A.; Malaterre, A.; et al. Long-term improvement of knee osteoarthritis after injection of single high/very high volume of very pure PRP: A retrospective analysis of patients optimally managed in dedicated centers. Regen. Ther. 2024, 25, 203–212. [Google Scholar] [CrossRef]
- Wiciński, M.; Szwedowski, D.; Wróbel, Ł.; Jeka, S.; Zabrzyński, J. The influence of body mass index on growth factor composition in the platelet-rich plasma in patients with knee osteoarthritis. Int. J. Environ. Res. Public Health 2022, 20, 40. [Google Scholar] [CrossRef]
- Rossi, L.; Ranalletta, M.; Pasqualini, I.; Zicaro, J.P.; Paz, M.C.; Camino, P.; Piuzzi, N.S. Substantial variability in platelet-rich plasma composition is based on patient age and baseline platelet count. Arthrosc. Sports Med. Rehabil. 2023, 5, e853–e858. [Google Scholar] [CrossRef]
- Alessio-Mazzola, M.; Lovisolo, S.; Sonzogni, B.; Capello, A.G.; Repetto, I.; Formica, M.; Felli, L. Clinical outcome and risk factor predictive for failure of autologous PRP injections for low-to-moderate knee osteoarthritis. J. Orthop. Surg. 2021, 29, 23094990211021922. [Google Scholar] [CrossRef]
- Annaniemi, J.A.; Pere, J.; Giordano, S. The efficacy of platelet-rich plasma injection therapy in obese versus non-obese patients with knee osteoarthritis: A comparative study. J. Clin. Med. 2024, 13, 2590. [Google Scholar] [CrossRef]
- Wiegertjes, R.; van de Loo, F.A.J.; Blaney Davidson, E.N. A roadmap to target interleukin-6 in osteoarthritis. Rheumatology 2020, 59, 2681–2694. [Google Scholar] [CrossRef] [PubMed]
- Ellis, I.; Schnabel, L.V.; Berglund, A.K. Defining the profile: Characterizing cytokines in tendon injury to improve clinical therapy. J. Immunol. Regen. Med. 2022, 16, 100059. [Google Scholar] [CrossRef] [PubMed]
- Mungunsukh, O.; McCart, E.A.; Day, R.M. Hepatocyte growth factor isoforms in tissue repair, cancer, and fibrotic remodeling. Biomedicines 2014, 2, 301–326. [Google Scholar] [CrossRef] [PubMed]
- Balaban, Y.H.; Sumer, H.; Simsek, H.; Us, D.; Tatar, G. Metabolic syndrome, non-alcoholic steatohepatitis (NASH), and hepatocyte growth factor (HGF). Ann. Hepatol. 2006, 5, 109–114. [Google Scholar] [CrossRef]
- Thomopoulos, S.; Zaegel, M.; Das, R.; Harwood, F.L.; Silva, M.J.; Amiel, D.; Sakiyama-Elbert, S.; Gelberman, R.H. PDGF-BB released in tendon repair using a novel delivery system promotes cell proliferation and collagen remodeling. J. Orthop. Res. 2007, 25, 1358–1368. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, L.; Lyu, K.; Lu, J.; Long, L.; Wang, X.; Liu, T.; Li, S. A promising candidate in tendon healing events—PDGF-BB. Biomolecules 2022, 12, 1518. [Google Scholar] [CrossRef]
- Schneider, H.J.; Saller, B.; Klotsche, J.; März, W.; Erwa, W.; Wittchen, H.-U.; Stalla, G.K. Opposite associations of age-dependent insulin-like growth factor-I standard deviation scores with nutritional state in normal weight and obese subjects. Eur. J. Endocrinol. 2006, 154, 699–706. [Google Scholar] [CrossRef]
- Anderson, L.J.; Tamayose, J.M.; Garcia, J.M. Use of growth hormone, IGF-I, and insulin for anabolic purpose: Pharmacological basis, methods of detection, and adverse effects. Mol. Cell Endocrinol. 2018, 464, 65–74. [Google Scholar] [CrossRef]
- Arthrex. ACP® Double-Syringe System—Simple and Efficient Preparation of PRP. Patent, 2023. Available online: https://discover.arthrex.de/acp-doppelspritze (accessed on 20 August 2025).
- Burnouf, T.; Strunk, D.; Koh, M.B.; Schallmoser, K. Human platelet lysate: Replacing fetal bovine serum as a gold standard for human cell propagation? Biomaterials 2016, 76, 371–387. [Google Scholar] [CrossRef]
- Aydin, A.; Aydin, S.G. A case-control study of the correlation between blood parameters and obesity. Cureus 2024, 16, e69809. [Google Scholar] [CrossRef]
- García-Bordes, L.; Álvarez-Díaz, P.; Alentorn-Geli, E.; Ferré-Aniorte, A.; Laiz-Boada, P.; Seijas-Vázquez, R.; Cugat-Bertomeu, R. Demographic, anthropometric and intrasubject variations affect platelet-rich plasma formulation. J. Exp. Orthop. 2025, 12, e70024. [Google Scholar] [CrossRef]
- Jeong, H.R.; Lee, H.S.; Shim, Y.S.; Hwang, J.S. Positive associations between body mass index and hematological parameters, including RBCs, WBCs, and platelet counts, in Korean children and adolescents. Children 2022, 9, 109. [Google Scholar] [CrossRef]
- Jayaram, P.; Yeh, P.; Patel, S.J.; Cela, R.; Shybut, T.B.; Grol, M.W.; Lee, B.H. Effects of aspirin on growth factor release from freshly isolated leukocyte-rich platelet-rich plasma in healthy men: A prospective fixed-sequence controlled laboratory study. Am. J. Sports Med. 2019, 47, 1223–1229. [Google Scholar] [CrossRef]
- Pulcini, S.; Merolle, L.; Marraccini, C.; Quartieri, E.; Mori, D.; Schiroli, D.; Berni, P.; Iotti, B.; Di Bartolomeo, E.; Baricchi, R.; et al. Apheresis Platelet Rich-Plasma for Regenerative Medicine: An In Vitro Study on Osteogenic Potential. Int. J. Mol. Sci. 2021, 22, 8764. [Google Scholar] [CrossRef]
- Rodríguez-Eguren, A.; de Miguel-Gómez, L.; Francés-Herrero, E.; Gómez-Álvarez, M.; Faus, A.; Gómez-Cerdá, M.; Moret-Tatay, I.; Díaz, A.; Pellicer, A.; Cervelló, I. Human umbilical cord platelet-rich plasma to treat endometrial pathologies: Methodology, composition and pre-clinical models. Hum. Reprod. Open 2023, 2023, hoac053. [Google Scholar] [CrossRef]
- Savastano, M.C.; Fossataro, C.; Berni, A.; Savastano, A.; Cestrone, V.; Giannuzzi, F.; Boselli, F.; Carlà, M.M.; Cusato, M.; Mottola, F.; et al. Intravitreal Injections of Cord Blood Platelet-Rich Plasma in Dry Age-Related Macular Degeneration: Regenerative Therapy. Ophthalmol. Sci. 2025, 5, 100732. [Google Scholar] [CrossRef]
Total 1 (n = 73) | BMI Groups | p-Value | |||
---|---|---|---|---|---|
Normal Weight (n = 37) | Overweight (n = 20) | Obesity (n = 16) | |||
Sex, n (%) | 0.053 | ||||
Female | 40 (55%) | 21 | 7 | 12 | |
Male | 33 (45%) | 16 | 13 | 4 | |
Age (years), mean ± SD; IQR | 28.70 ± 4.53; 8.00 | 27.62 ± 4.09; 6.00 | 28.85 ± 4.06; 8.00 | 31.00 ± 5.37; 10.00 | 0.082 |
BMI (kg/m2), mean ± SD; IQR | 25.85 ± 6.90; 8.68 | 20.80 ± 1.73; 3.11 | 26.60 ± 1.30; 1.78 | 36.60 ± 5.68; 9.57 | – |
Lifestyle factors, n (%) | |||||
Alcohol use | 39 (53%) | 19 | 15 | 5 | 0.031 |
Caffeine use | 42 (58%) | 20 | 14 | 8 | 0.410 |
BMI Groups 1 | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|
Normal Weight | Overweight | Obesity | |||||||
Mean | SD | Mean | SD | Mean | SD | ||||
Whole blood | Platelets (/nL) | 237.32 | 53.57 | 243.30 | 55.23 | 264.44 | 50.14 | 0.264 | |
Erythrocytes (×103/nL) | 4.59 | 0.44 | 4.95 | 0.24 | 4.77 | 0.47 | 0.002 | ||
Leukocytes (/nL) | 5.61 | 1.35 | 6.18 | 1.15 | 8.14 | 2.34 | <0.001 | ||
Lymphocytes (%) | 32.78 | 6.38 | 31.09 | 7.84 | 28.27 | 5.51 | 0.082 | ||
Monocytes (%) | 5.51 | 1.39 | 5.82 | 1.62 | 5.33 | 1.70 | 0.725 | ||
Basophils (%) | 0.65 | 0.28 | 0.66 | 0.22 | 0.68 | 0.24 | 0.804 | ||
Eosinophils (%) | 2.85 | 2.52 | 2.71 | 1.80 | 2.33 | 1.15 | 0.864 | ||
Neutrophils (%) | 55.87 | 6.70 | 57.63 | 9.24 | 61.43 | 6.74 | 0.057 | ||
PRP | Platelets (/nL) | 487.89 | 126.51 | 527.60 | 130.93 | 515.50 | 84.93 | 0.450 | |
PRP-to-whole blood platelet ratio | 2.07 | 0.35 | 2.10 | 0.38 | 1.97 | 0.27 | 0.227 |
Platelets Whole Blood 1 | Platelets PRP 1 | ||||||
---|---|---|---|---|---|---|---|
Normal Weight | Overweight | Obesity | Normal Weight | Overweight | Obesity | ||
IL6 | ρ p-Value | −0.176 | 0.235 | 0.168 | 0.97 | 0.207 | −0.330 |
0.298 | 0.318 | 0.534 | 0.570 | 0.382 | 0.904 | ||
IGF1 | ρ p-Value | 0.148 | 0.411 | −0.082 | 0.278 | 0.155 | −0.165 |
0.382 | 0.072 | 0.762 | 0.095 | 0.515 | 0.542 | ||
HGF | ρ p-Value | −0.274 | 0.090 | −0.326 | 0.087 | 0.179 | −0.200 |
0.101 | 0.707 | 0.217 | 0.607 | 0.449 | 0.458 | ||
PDGF-BB | ρ p-Value | 0.165 | 0.375 | 0.274 | 0.364 * | 0.380 | 0.247 |
0.330 | 0.103 | 0.305 | 0.027 | 0.098 | 0.356 |
IL6 | IGF1 | HGF | PDGF-BB | |
---|---|---|---|---|
Normal Weight | ||||
sex r | −0.140 | −0.171 | −0.324 * | −0.306 |
p-Value | 0.407 | 0.312 | 0.050 | 0.066 |
caffeine r | 0.268 | 0.308 | 0.459 ** | −0.099 |
p-Value | 0.109 | 0.064 | 0.004 | 0.561 |
Overweight | ||||
sex r | 0.274 | 0.667 ** | 0.190 | −0.065 |
p-Value | 0.242 | 0.001 | 0.422 | 0.787 |
caffeine r | −0.174 | −0.282 | −0.208 | 0.421 |
p-Value | 0.463 | 0.229 | 0.378 | 0.065 |
Obesity | ||||
sex r | 0.261 | 0.356 | 0.199 | −0.043 |
p-Value | 0.328 | 0.176 | 0.459 | 0.875 |
caffeine r | −0.359 | −0.054 | −0.393 | 0.045 |
p-Value | 0.172 | 0.842 | 0.132 | 0.870 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Platzer, H.; Bork, A.; Wellbrock, M.; Pourbozorg, G.; Gantz, S.; Sorbi, R.; Mayakrishnan, R.; Hagmann, S.; Bangert, Y.; Moradi, B. Association Between Body Mass Index and the Composition of Leucocyte-Poor Platelet-Rich Plasma: Implications for Personalized Approaches in Musculoskeletal Medicine. Curr. Issues Mol. Biol. 2025, 47, 824. https://doi.org/10.3390/cimb47100824
Platzer H, Bork A, Wellbrock M, Pourbozorg G, Gantz S, Sorbi R, Mayakrishnan R, Hagmann S, Bangert Y, Moradi B. Association Between Body Mass Index and the Composition of Leucocyte-Poor Platelet-Rich Plasma: Implications for Personalized Approaches in Musculoskeletal Medicine. Current Issues in Molecular Biology. 2025; 47(10):824. https://doi.org/10.3390/cimb47100824
Chicago/Turabian StylePlatzer, Hadrian, Alena Bork, Malte Wellbrock, Ghazal Pourbozorg, Simone Gantz, Reza Sorbi, Ravikumar Mayakrishnan, Sébastien Hagmann, Yannic Bangert, and Babak Moradi. 2025. "Association Between Body Mass Index and the Composition of Leucocyte-Poor Platelet-Rich Plasma: Implications for Personalized Approaches in Musculoskeletal Medicine" Current Issues in Molecular Biology 47, no. 10: 824. https://doi.org/10.3390/cimb47100824
APA StylePlatzer, H., Bork, A., Wellbrock, M., Pourbozorg, G., Gantz, S., Sorbi, R., Mayakrishnan, R., Hagmann, S., Bangert, Y., & Moradi, B. (2025). Association Between Body Mass Index and the Composition of Leucocyte-Poor Platelet-Rich Plasma: Implications for Personalized Approaches in Musculoskeletal Medicine. Current Issues in Molecular Biology, 47(10), 824. https://doi.org/10.3390/cimb47100824