Desialylation and Apoptosis in Immune Thrombocytopenia: Implications for Pathogenesis and Treatment
Abstract
1. Introduction
2. Platelet Biogenesis and the Regulation of Lifespan
2.1. Platelet Desialylation and the Regulation of Lifespan
2.2. Platelet Apoptosis and Platelet Lifespan
Comment | Reference; Year |
---|---|
Nucleus is not required for apoptosis | [47]; 1994 |
Apoptosis-like events associated with platelet activation | [48]; 1999 |
Anti-platelet antibodies modulate caspase activity and regulate platelet lifespan in mice | [49]; 2002 |
Apoptosis associated with shortened platelet survival in rabbits | [50]; 2004 |
Anti GPIIb antibody induces platelet apoptosis in mice | [51]; 2006 |
Thrombin induces platelet apoptosis | [52,53]; 2007, 2006 |
Apoptosis program controls platelet lifespan | [42]; 2007 |
Cold storage leads to platelet apoptosis | [54]; 2010 |
Apoptotic platelets observed in paediatric patients with ITP | [55]; 2012 |
Platelet apoptosis in adult ITP | [56,57]; 2018, 2016 |
The presence of anti-platelet antibodies predicts apoptosis in ITP | [38]; 2022 |
3. Immune Thrombocytopenia
3.1. Presentation
3.2. Pathogenesis
3.2.1. Fc-Dependent Pathway
3.2.2. Fc-Independent Pathway
4. Therapeutic Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cines, D.B.; Bussel, J.B.; Liebman, H.A.; Luning Prak, E.T. The ITP syndrome: Pathogenic and clinical diversity. Blood 2009, 113, 6511–6521. [Google Scholar] [CrossRef] [PubMed]
- Chong, B.H.; Choi, P.Y.; Khachigian, L.; Perdomo, J. Drug-induced immune thrombocytopenia. Hematol. Oncol. Clin. N. Am. 2013, 27, 521–540. [Google Scholar] [CrossRef]
- Provan, D.; Stasi, R.; Newland, A.C.; Blanchette, V.S.; Bolton-Maggs, P.; Bussel, J.B.; Chong, B.H.; Cines, D.B.; Gernsheimer, T.B.; Godeau, B.; et al. International consensus report on the investigation and management of primary immune thrombocytopenia. Blood 2010, 115, 168–186. [Google Scholar] [CrossRef]
- Lambert, M.P.; Gernsheimer, T.B. Clinical updates in adult immune thrombocytopenia. Blood 2017, 129, 2829–2835. [Google Scholar] [CrossRef]
- Verissimo, V.; Carter, T.; Wright, H.; Robertson, J.; Osborn, M.; Bradbeer, P.; Sabesan, V.; Saxon, B.; Barbaro, P.; Crighton, G.; et al. Australian and New Zealand consensus guideline for paediatric newly diagnosed immune thrombocytopaenia endorsed by Australian New Zealand Children’s Haematology and Oncology Group. J. Paediatr. Child Health 2023, 59, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Harrington, W.J.; Minnich, V.; Hollingsworth, J.W.; Moore, C.V. Demonstration of a thrombocytopenic factor in the blood of patients with thrombocytopenic purpura. J. Lab. Clin. Med. 1951, 38, 1–10. [Google Scholar]
- Schwartz, R.S. Immune thrombocytopenic purpura—From agony to agonist. N. Engl. J. Med. 2007, 357, 2299–2301. [Google Scholar] [CrossRef] [PubMed]
- Shulman, N.R.; Marder, V.J.; Weinrach, R.S. Similarities between known antiplatelet antibodies and the factor responsible for thrombocytopenia in idiopathic purpura. Physiologic, serologic and isotopic studies. Ann. N. Y. Acad. Sci. 1965, 124, 499–542. [Google Scholar] [CrossRef] [PubMed]
- Hollenhorst, M.A.; Al-Samkari, H.; Kuter, D.J. Markers of autoimmunity in immune thrombocytopenia: Prevalence and prognostic significance. Blood Adv. 2019, 3, 3515–3521. [Google Scholar] [CrossRef]
- Grozovsky, R.; Giannini, S.; Falet, H.; Hoffmeister, K.M. Regulating billions of blood platelets: Glycans and beyond. Blood 2015, 126, 1877–1884. [Google Scholar] [CrossRef]
- Cines, D.B.; Cuker, A.; Semple, J.W. Pathogenesis of immune thrombocytopenia. Presse Med. 2014, 43, e49–e59. [Google Scholar] [CrossRef] [PubMed]
- Broudy, V.C.; Lin, N.L.; Kaushansky, K. Thrombopoietin (c-mpl ligand) acts synergistically with erythropoietin, stem cell factor, and interleukin-11 to enhance murine megakaryocyte colony growth and increases megakaryocyte ploidy in vitro. Blood 1995, 85, 1719–1726. [Google Scholar] [CrossRef] [PubMed]
- Debili, N.; Wendling, F.; Katz, A.; Guichard, J.; Breton-Gorius, J.; Hunt, P.; Vainchenker, W. The Mpl-ligand or thrombopoietin or megakaryocyte growth and differentiative factor has both direct proliferative and differentiative activities on human megakaryocyte progenitors. Blood 1995, 86, 2516–2525. [Google Scholar] [CrossRef] [PubMed]
- Broudy, V.C.; Lin, N.L.; Sabath, D.F.; Papayannopoulou, T.; Kaushansky, K. Human platelets display high-affinity receptors for thrombopoietin. Blood 1997, 89, 1896–1904. [Google Scholar] [CrossRef]
- Sungaran, R.; Markovic, B.; Chong, B.H. Localization and regulation of thrombopoietin mRNa expression in human kidney, liver, bone marrow, and spleen using in situ hybridization. Blood 1997, 89, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xia, Y.; Kuter, D.J. Interaction of thrombopoietin with the platelet c-mpl receptor in plasma: Binding, internalization, stability and pharmacokinetics. Br. J. Haematol. 1999, 106, 345–356. [Google Scholar] [CrossRef]
- Deutsch, V.R.; Tomer, A. Megakaryocyte development and platelet production. Br. J. Haematol. 2006, 134, 453–466. [Google Scholar] [CrossRef]
- Kuter, D.J.; Rosenberg, R.D. The reciprocal relationship of thrombopoietin (c-Mpl ligand) to changes in the platelet mass during busulfan-induced thrombocytopenia in the rabbit. Blood 1995, 85, 2720–2730. [Google Scholar] [CrossRef] [PubMed]
- Kuter, D.J.; Gernsheimer, T.B. Thrombopoietin and platelet production in chronic immune thrombocytopenia. Hematol. Oncol. Clin. N. Am. 2009, 23, 1193–1211. [Google Scholar] [CrossRef]
- Grozovsky, R.; Begonja, A.J.; Liu, K.; Visner, G.; Hartwig, J.H.; Falet, H.; Hoffmeister, K.M. The Ashwell-Morell receptor regulates hepatic thrombopoietin production via JAK2-STAT3 signaling. Nat. Med. 2015, 21, 47–54. [Google Scholar] [CrossRef]
- Berndt, M.C.; Gregory, C.; Kabral, A.; Zola, H.; Fournier, D.; Castaldi, P.A. Purification and preliminary characterization of the glycoprotein Ib complex in the human platelet membrane. Eur. J. Biochem. 1985, 151, 637–649. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Deng, W.; Zhou, L.; Xu, Y.; Yang, W.; Liang, X.; Wang, Y.; Kulman, J.D.; Zhang, X.F.; Li, R. Identification of a juxtamembrane mechanosensitive domain in the platelet mechanosensor glycoprotein Ib-IX complex. Blood 2015, 125, 562–569. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, J.; Packham, M.A.; Cazenave, J.P.; Reimers, H.J.; Mustard, J.F. Effects on platelet function of removal of platelet sialic acid by neuraminidase. Lab. Investig. 1975, 32, 476–484. [Google Scholar] [PubMed]
- Eto, K.; Kunishima, S. Linkage between the mechanisms of thrombocytopenia and thrombopoiesis. Blood 2016, 127, 1234–1241. [Google Scholar] [CrossRef]
- Judson, P.A.; Anstee, D.J.; Clamp, J.R. Isolation and characterization of the major oligosaccharide of human platelet membrane glycoprotein GPIb. Biochem. J. 1982, 205, 81–90. [Google Scholar] [CrossRef]
- Madoff, M.A.; Ebbe, S.; Baldini, M. Sialic acid of human blood platelets. J. Clin. Investig. 1964, 43, 870–877. [Google Scholar] [CrossRef]
- Karpatkin, S.; Shulman, S. Asialo platelets enhance thrombopoiesis. Trans. Assoc. Am. Physicians 1980, 93, 244–250. [Google Scholar]
- Kotzé, H.F.; van Wyk, V.; Badenhorst, P.N.; Heyns, A.D.; Roodt, J.P.; Lötter, M.G. Influence of platelet membrane sialic acid and platelet-associated IgG on ageing and sequestration of blood platelets in baboons. Thromb. Haemost. 1993, 70, 676–680. [Google Scholar] [CrossRef]
- Sorensen, A.L.; Rumjantseva, V.; Nayeb-Hashemi, S.; Clausen, H.; Hartwig, J.H.; Wandall, H.H.; Hoffmeister, K.M. Role of sialic acid for platelet life span: Exposure of beta-galactose results in the rapid clearance of platelets from the circulation by asialoglycoprotein receptor-expressing liver macrophages and hepatocytes. Blood 2009, 114, 1645–1654. [Google Scholar] [CrossRef]
- Jansen, A.J.; Josefsson, E.C.; Rumjantseva, V.; Liu, Q.P.; Falet, H.; Bergmeier, W.; Cifuni, S.M.; Sackstein, R.; von Andrian, U.H.; Wagner, D.D.; et al. Desialylation accelerates platelet clearance after refrigeration and initiates GPIbalpha metalloproteinase-mediated cleavage in mice. Blood 2012, 119, 1263–1273. [Google Scholar] [CrossRef]
- Li, J.; Callum, J.L.; Lin, Y.; Zhou, Y.; Zhu, G.; Ni, H. Severe platelet desialylation in a patient with glycoprotein Ib/IX antibody-mediated immune thrombocytopenia and fatal pulmonary hemorrhage. Haematologica 2014, 99, e61–e63. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; van der Wal, D.E.; Zhu, G.; Xu, M.; Yougbare, I.; Ma, L.; Vadasz, B.; Carrim, N.; Grozovsky, R.; Ruan, M.; et al. Desialylation is a mechanism of Fc-independent platelet clearance and a therapeutic target in immune thrombocytopenia. Nat. Commun. 2015, 6, 7737. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Wu, Y.; Zhou, H.; Qin, P.; Ni, H.; Peng, J.; Hou, M. Successful treatment with oseltamivir phosphate in a patient with chronic immune thrombocytopenia positive for anti-GPIb/IX autoantibody. Platelets 2015, 26, 495–497. [Google Scholar] [CrossRef]
- Revilla, N.; Corral, J.; Miñano, A.; Mingot-Castellano, M.E.; Campos, R.M.; Velasco, F.; Gonzalez, N.; Galvez, E.; Berrueco, R.; Fuentes, I.; et al. Multirefractory primary immune thrombocytopenia; targeting the decreased sialic acid content. Platelets 2019, 30, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Grodzielski, M.; Goette, N.P.; Glembotsky, A.C.; Constanza Baroni Pietto, M.; Mendez-Huergo, S.P.; Pierdominici, M.S.; Montero, V.S.; Rabinovich, G.A.; Molinas, F.C.; Heller, P.G.; et al. Multiple concomitant mechanisms contribute to low platelet count in patients with immune thrombocytopenia. Sci. Rep. 2019, 9, 2208. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.S.; Perdomo, J.S.; Leung, H.H.L.; Yan, F.; Chong, B.H. Acquired Glanzmann thrombasthenia associated with platelet desialylation. J. Thromb. Haemost. 2020, 18, 714–721. [Google Scholar] [CrossRef] [PubMed]
- Marini, I.; Zlamal, J.; Faul, C.; Holzer, U.; Hammer, S.; Pelzl, L.; Bethge, W.; Althaus, K.; Bakchoul, T. Autoantibody-mediated desialylation impairs human thrombopoiesis and platelet lifespan. Haematologica 2021, 106, 196–207. [Google Scholar] [CrossRef]
- Zheng, S.S.; Ahmadi, Z.; Leung, H.H.L.; Wong, R.; Yan, F.; Perdomo, J.S.; Chong, B.H. Antiplatelet antibody predicts platelet desialylation and apoptosis in immune thrombocytopenia. Haematologica 2022, 107, 2195–2205. [Google Scholar] [CrossRef]
- Leeksma, C.H.W.; Cohen, J.A. Determination of the Life of Human Blood Platelets using Labelled Diisopropylfluorophosphonate. Nature 1955, 175, 552–553. [Google Scholar] [CrossRef]
- Josefsson, E.C.; Dowling, M.R.; Lebois, M.; Kile, B.T. Chapter 3—The Regulation of Platelet Life Span. In Platelets, 3rd ed.; Michelson, A.D., Ed.; Academic Press: Cambridge, MA, USA, 2013; pp. 51–65. [Google Scholar]
- Kile, B.T. The role of apoptosis in megakaryocytes and platelets. Br. J. Haematol. 2014, 165, 217–226. [Google Scholar] [CrossRef]
- Mason, K.D.; Carpinelli, M.R.; Fletcher, J.I.; Collinge, J.E.; Hilton, A.A.; Ellis, S.; Kelly, P.N.; Ekert, P.G.; Metcalf, D.; Roberts, A.W.; et al. Programmed anuclear cell death delimits platelet life span. Cell 2007, 128, 1173–1186. [Google Scholar] [CrossRef] [PubMed]
- McArthur, K.; Chappaz, S.; Kile, B.T. Apoptosis in megakaryocytes and platelets: The life and death of a lineage. Blood 2018, 131, 605–610. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Nimmer, P.M.; Tahir, S.K.; Chen, J.; Fryer, R.M.; Hahn, K.R.; Iciek, L.A.; Morgan, S.J.; Nasarre, M.C.; Nelson, R.; et al. Bcl-2 family proteins are essential for platelet survival. Cell Death Differ. 2007, 14, 943–951. [Google Scholar] [CrossRef] [PubMed]
- Gardino, A.K.; Yaffe, M.B. 14-3-3 proteins as signaling integration points for cell cycle control and apoptosis. Semin. Cell Dev. Biol. 2011, 22, 688–695. [Google Scholar] [CrossRef]
- Grozovsky, R.; Fraser, C.; Hoffmeister, K.M.; Sarosiek, K.; Giannini, S. Desialylation and Apoptosis Crosstalk to Modulate Platelet Clearance. Blood 2019, 134, 1055. [Google Scholar] [CrossRef]
- Jacobson, M.D.; Burne, J.F.; Raff, M.C. Programmed cell death and Bcl-2 protection in the absence of a nucleus. EMBO J. 1994, 13, 1899–1910. [Google Scholar] [CrossRef]
- Wolf, B.B.; Goldstein, J.C.; Stennicke, H.R.; Beere, H.; Amarante-Mendes, G.P.; Salvesen, G.S.; Green, D.R. Calpain functions in a caspase-independent manner to promote apoptosis-like events during platelet activation. Blood 1999, 94, 1683–1692. [Google Scholar] [CrossRef]
- Piguet, P.F.; Vesin, C. Modulation of platelet caspases and life-span by anti-platelet antibodies in mice. Eur. J. Haematol. 2002, 68, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Rand, M.L.; Wang, H.; Bang, K.W.A.; Poon, K.S.V.; Packham, M.A.; Freedman, J. Procoagulant surface exposure and apoptosis in rabbit platelets: Association with shortened survival and steady-state senescence. J. Thromb. Haemost. 2004, 2, 651–659. [Google Scholar] [CrossRef]
- Leytin, V.; Mykhaylov, S.; Starkey, A.F.; Allen, D.J.; Lau, H.; Ni, H.; Semple, J.W.; Lazarus, A.H.; Freedman, J. Intravenous immunoglobulin inhibits anti-glycoprotein IIb-induced platelet apoptosis in a murine model of immune thrombocytopenia. Br. J. Haematol. 2006, 133, 78–82. [Google Scholar] [CrossRef]
- Leytin, V.; Allen, D.J.; Mykhaylov, S.; Lyubimov, E.; Freedman, J. Thrombin-triggered platelet apoptosis. J. Thromb. Haemost. 2006, 4, 2656–2663. [Google Scholar] [CrossRef] [PubMed]
- Lopez, J.J.; Salido, G.M.; Gomez-Arteta, E.; Rosado, J.A.; Pariente, J.A. Thrombin induces apoptotic events through the generation of reactive oxygen species in human platelets. J. Thromb. Haemost. 2007, 5, 1283–1291. [Google Scholar] [CrossRef]
- van der Wal, D.E.; Du, V.X.; Lo, K.S.; Rasmussen, J.T.; Verhoef, S.; Akkerman, J.W. Platelet apoptosis by cold-induced glycoprotein Ibalpha clustering. J. Thromb. Haemost. 2010, 8, 2554–2562. [Google Scholar] [CrossRef] [PubMed]
- Winkler, J.; Kroiss, S.; Rand, M.L.; Azzouzi, I.; Annie Bang, K.W.; Speer, O.; Schmugge, M. Platelet apoptosis in paediatric immune thrombocytopenia is ameliorated by intravenous immunoglobulin. Br. J. Haematol. 2012, 156, 508–515. [Google Scholar] [CrossRef]
- Goette, N.P.; Glembotsky, A.C.; Lev, P.R.; Grodzielski, M.; Contrufo, G.; Pierdominici, M.S.; Espasandin, Y.R.; Riveros, D.; García, A.J.; Molinas, F.C.; et al. Platelet Apoptosis in Adult Immune Thrombocytopenia: Insights into the Mechanism of Damage Triggered by Auto-Antibodies. PLoS ONE 2016, 11, e0160563. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Yan, R.; Zhou, K.; Li, X.; Zhang, Y.; Liu, C.; Jiang, M.; Ye, H.; Meng, X.; Pang, N.; et al. Akt-mediated platelet apoptosis and its therapeutic implications in immune thrombocytopenia. Proc. Natl. Acad. Sci. USA 2018, 115, E10682-e10691. [Google Scholar] [CrossRef]
- Cohen, Y.C.; Djulbegovic, B.; Shamai-Lubovitz, O.; Mozes, B. The bleeding risk and natural history of idiopathic thrombocytopenic purpura in patients with persistent low platelet counts. Arch. Intern. Med. 2000, 160, 1630–1638. [Google Scholar] [CrossRef]
- Deckmyn, H.; De Reys, S. Functional effects of human antiplatelet antibodies. Semin. Thromb. Hemost. 1995, 21, 46–59. [Google Scholar] [CrossRef]
- Doobaree, I.U.; Nandigam, R.; Bennett, D.; Newland, A.; Provan, D. Thromboembolism in adults with primary immune thrombocytopenia: A systematic literature review and meta-analysis. Eur. J. Haematol. 2016, 97, 321–330. [Google Scholar] [CrossRef]
- Hill, Q.A.; Newland, A.C. Fatigue in immune thrombocytopenia. Br. J. Haematol. 2015, 170, 141–149. [Google Scholar] [CrossRef]
- Portielje, J.E.; Westendorp, R.G.; Kluin-Nelemans, H.C.; Brand, A. Morbidity and mortality in adults with idiopathic thrombocytopenic purpura. Blood 2001, 97, 2549–2554. [Google Scholar] [CrossRef] [PubMed]
- Frederiksen, H.; Maegbaek, M.L.; Norgaard, M. Twenty-year mortality of adult patients with primary immune thrombocytopenia: A Danish population-based cohort study. Br. J. Haematol. 2014, 166, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Norgaard, M.; Jensen, A.O.; Engebjerg, M.C.; Farkas, D.K.; Thomsen, R.W.; Cha, S.; Zhao, S.; Sorensen, H.T. Long-term clinical outcomes of patients with primary chronic immune thrombocytopenia: A Danish population-based cohort study. Blood 2011, 117, 3514–3520. [Google Scholar] [CrossRef] [PubMed]
- Schoonen, W.M.; Kucera, G.; Coalson, J.; Li, L.; Rutstein, M.; Mowat, F.; Fryzek, J.; Kaye, J.A. Epidemiology of immune thrombocytopenic purpura in the General Practice Research Database. Br. J. Haematol. 2009, 145, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, D.E.; Heitink-Polle, K.M.J.; Porcelijn, L.; van der Schoot, C.E.; Vidarsson, G.; Bruin, M.C.A.; de Haas, M. Anti-platelet antibodies in childhood immune thrombocytopenia: Prevalence and prognostic implications. J. Thromb. Haemost. 2020, 18, 1210–1220. [Google Scholar] [CrossRef]
- Brighton, T.A.; Evans, S.; Castaldi, P.A.; Chesterman, C.N.; Chong, B.H. Prospective evaluation of the clinical usefulness of an antigen-specific assay (MAIPA) in idiopathic thrombocytopenic purpura and other immune thrombocytopenias. Blood 1996, 88, 194–201. [Google Scholar] [CrossRef]
- Al-Samkari, H.; Rosovsky, R.P.; Karp Leaf, R.S.; Smith, D.B.; Goodarzi, K.; Fogerty, A.E.; Sykes, D.B.; Kuter, D.J. A modern reassessment of glycoprotein-specific direct platelet autoantibody testing in immune thrombocytopenia. Blood Adv. 2019, 4, 9–18. [Google Scholar] [CrossRef]
- He, R.; Reid, D.M.; Jones, C.E.; Shulman, N.R. Spectrum of Ig classes, specificities, and titers of serum antiglycoproteins in chronic idiopathic thrombocytopenic purpura. Blood 1994, 83, 1024–1032. [Google Scholar] [CrossRef]
- Kiefel, V.; Santoso, S.; Kaufmann, E.; Mueller-Eckhardt, C. Autoantibodies against platelet glycoprotein Ib/IX: A frequent finding in autoimmune thrombocytopenic purpura. Br. J. Haematol. 1991, 79, 256–262. [Google Scholar] [CrossRef]
- Vollenberg, R.; Jouni, R.; Norris, P.A.A.; Burg-Roderfeld, M.; Cooper, N.; Rummel, M.J.; Bein, G.; Marini, I.; Bayat, B.; Burack, R.; et al. Glycoprotein V is a relevant immune target in patients with immune thrombocytopenia. Haematologica 2019, 104, 1237–1243. [Google Scholar] [CrossRef]
- Garner, S.F.; Campbell, K.; Metcalfe, P.; Keidan, J.; Huiskes, E.; Dong, J.F.; Lopez, J.A.; Ouwehand, W.H. Glycoprotein V: The predominant target antigen in gold-induced autoimmune thrombocytopenia. Blood 2002, 100, 344–346. [Google Scholar] [CrossRef] [PubMed]
- Porcelijn, L.; Huiskes, E.; Oldert, G.; Schipperus, M.; Zwaginga, J.J.; de Haas, M. Detection of platelet autoantibodies to identify immune thrombocytopenia: State of the art. Br. J. Haematol. 2018, 182, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Johnsen, J. Pathogenesis in immune thrombocytopenia: New insights. Hematol. Am. Soc. Hematol. Educ. Program 2012, 2012, 306–312. [Google Scholar] [CrossRef]
- Stasi, R.; Cooper, N.; Del Poeta, G.; Stipa, E.; Laura Evangelista, M.; Abruzzese, E.; Amadori, S. Analysis of regulatory T-cell changes in patients with idiopathic thrombocytopenic purpura receiving B cell-depleting therapy with rituximab. Blood 2008, 112, 1147–1150. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhao, H.; Poon, M.C.; Han, Z.; Gu, D.; Xu, M.; Jia, H.; Yang, R.; Han, Z.C. Abnormality of CD4+CD25+ regulatory T cells in idiopathic thrombocytopenic purpura. Eur. J. Haematol. 2007, 78, 139–143. [Google Scholar] [CrossRef]
- Ling, Y.; Cao, X.; Yu, Z.; Ruan, C. Circulating dendritic cells subsets and CD4+Foxp3+ regulatory T cells in adult patients with chronic ITP before and after treatment with high-dose dexamethasome. Eur. J. Haematol. 2007, 79, 310–316. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, D.; Zhu, X.; Qu, X.; Ji, C.; Hou, M. Elevated profile of Th17, Th1 and Tc1 cells in patients with immune thrombocytopenic purpura. Haematologica 2009, 94, 1326–1329. [Google Scholar] [CrossRef]
- Stasi, R.; Del Poeta, G.; Stipa, E.; Evangelista, M.L.; Trawinska, M.M.; Cooper, N.; Amadori, S. Response to B-cell-depleting therapy with rituximab reverts the abnormalities of T-cell subsets in patients with idiopathic thrombocytopenic purpura. Blood 2007, 110, 2924–2930. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, B.M.; Guo, X.; Xu, L.; You, X.; West, R.B.; Bussel, J.B.; Zehnder, J.L. Blood transcriptome and clonal T-cell correlates of response and non-response to eltrombopag therapy in a cohort of patients with chronic immune thrombocytopenia. Haematologica 2020, 105, e129–e132. [Google Scholar] [CrossRef]
- Fogarty, P.F.; Rick, M.E.; Zeng, W.; Risitano, A.M.; Dunbar, C.E.; Bussel, J.B. T cell receptor VB repertoire diversity in patients with immune thrombocytopenia following splenectomy. Clin. Exp. Immunol. 2003, 133, 461–466. [Google Scholar] [CrossRef]
- Nieswandt, B.; Bergmeier, W.; Rackebrandt, K.; Gessner, J.E.; Zirngibl, H. Identification of critical antigen-specific mechanisms in the development of immune thrombocytopenic purpura in mice. Blood 2000, 96, 2520–2527. [Google Scholar] [CrossRef] [PubMed]
- Hoffmeister, K.M.; Felbinger, T.W.; Falet, H.; Denis, C.V.; Bergmeier, W.; Mayadas, T.N.; von Andrian, U.H.; Wagner, D.D.; Stossel, T.P.; Hartwig, J.H. The clearance mechanism of chilled blood platelets. Cell 2003, 112, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Hoffmeister, K.M.; Josefsson, E.C.; Isaac, N.A.; Clausen, H.; Hartwig, J.H.; Stossel, T.P. Glycosylation restores survival of chilled blood platelets. Science 2003, 301, 1531–1534. [Google Scholar] [CrossRef]
- Rumjantseva, V.; Grewal, P.K.; Wandall, H.H.; Josefsson, E.C.; Sorensen, A.L.; Larson, G.; Marth, J.D.; Hartwig, J.H.; Hoffmeister, K.M. Dual roles for hepatic lectin receptors in the clearance of chilled platelets. Nat. Med. 2009, 15, 1273–1280. [Google Scholar] [CrossRef]
- Qiao, J.; Al-Tamimi, M.; Baker, R.I.; Andrews, R.K.; Gardiner, E.E. The platelet Fc receptor, FcgammaRIIa. Immunol. Rev. 2015, 268, 241–252. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.; Moore, J.C.; Finch, C.N.; Warkentin, T.E.; Kelton, J.G. The IgG subclasses of platelet-associated autoantibodies directed against platelet glycoproteins IIb/IIIa in patients with idiopathic thrombocytopenic purpura. Br. J. Haematol. 2003, 122, 818–824. [Google Scholar] [CrossRef]
- Cantoni, S.; Carpenedo, M.; Nichelatti, M.; Sica, L.; Rossini, S.; Milella, M.; Popescu, C.; Cairoli, R. Clinical relevance of antiplatelet antibodies and the hepatic clearance of platelets in patients with immune thrombocytopenia. Blood 2016, 128, 2183–2185. [Google Scholar] [CrossRef]
- Amini, S.N.; Nelson, V.S.; Porcelijn, L.; Netelenbos, T.; Zwaginga, J.J.; de Haas, M.; Schipperus, M.R.; Kapur, R. The interplay between GPIb/IX antibodies, platelet hepatic sequestration, and TPO levels in patients with chronic ITP. Blood Adv. 2023, 7, 1066–1069. [Google Scholar] [CrossRef]
- Morodomi, Y.; Kanaji, S.; Won, E.; Ruggeri, Z.M.; Kanaji, T. Mechanisms of anti-GPIbα antibody–induced thrombocytopenia in mice. Blood 2020, 135, 2292–2301. [Google Scholar] [CrossRef]
- Qiao, J.; Liu, Y.; Li, D.; Wu, Y.; Li, X.; Yao, Y.; Niu, M.; Fu, C.; Li, H.; Ma, P.; et al. Imbalanced expression of Bcl-xL and Bax in platelets treated with plasma from immune thrombocytopenia. Immunol. Res. 2016, 64, 604–609. [Google Scholar] [CrossRef]
- Nassa, G.; Giurato, G.; Cimmino, G.; Rizzo, F.; Ravo, M.; Salvati, A.; Nyman, T.A.; Zhu, Y.; Vesterlund, M.; Lehtiö, J.; et al. Splicing of platelet resident pre-mRNAs upon activation by physiological stimuli results in functionally relevant proteome modifications. Sci. Rep. 2018, 8, 498. [Google Scholar] [CrossRef] [PubMed]
- Mills, E.W.; Green, R.; Ingolia, N.T. Slowed decay of mRNAs enhances platelet specific translation. Blood 2017, 129, e38–e48. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Christodoulides, N.; Resendiz, J.C.; Berndt, M.C.; Kroll, M.H. Cytoplasmic domains of GpIbalpha and GpIbbeta regulate 14-3-3zeta binding to GpIb/IX/V. Blood 2000, 95, 551–557. [Google Scholar] [CrossRef]
- George, N.M.; Targy, N.; Evans, J.J.; Zhang, L.; Luo, X. Bax contains two functional mitochondrial targeting sequences and translocates to mitochondria in a conformational change- and homo-oligomerization-driven process. J. Biol. Chem. 2010, 285, 1384–1392. [Google Scholar] [CrossRef]
- Li, S.; Wang, Z.; Liao, Y.; Zhang, W.; Shi, Q.; Yan, R.; Ruan, C.; Dai, K. The glycoprotein Ibalpha-von Willebrand factor interaction induces platelet apoptosis. J. Thromb. Haemost. 2010, 8, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Zhang, W.; Yan, R.; Liao, Y.; Zhao, L.; Ruan, C.; Du, X.; Dai, K. Identification of a novel 14-3-3zeta binding site within the cytoplasmic domain of platelet glycoprotein Ibalpha that plays a key role in regulating the von Willebrand factor binding function of glycoprotein Ib-IX. Circ. Res. 2009, 105, 1177–1185. [Google Scholar] [CrossRef]
- Vrbensky, J.R.; Moore, J.E.; Arnold, D.M.; Smith, J.W.; Kelton, J.G.; Nazy, I. The sensitivity and specificity of platelet autoantibody testing in immune thrombocytopenia: A systematic review and meta-analysis of a diagnostic test. J. Thromb. Haemost. 2019, 17, 787–794. [Google Scholar] [CrossRef]
- Olsson, B.; Andersson, P.O.; Jernas, M.; Jacobsson, S.; Carlsson, B.; Carlsson, L.M.; Wadenvik, H. T-cell-mediated cytotoxicity toward platelets in chronic idiopathic thrombocytopenic purpura. Nat. Med. 2003, 9, 1123–1124. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Chu, X.; Wang, L.; Zhu, Y.; Li, L.; Ma, D.; Peng, J.; Hou, M. Cell-mediated lysis of autologous platelets in chronic idiopathic thrombocytopenic purpura. Eur. J. Haematol. 2006, 76, 427–431. [Google Scholar] [CrossRef]
- Zhao, C.; Li, X.; Zhang, F.; Wang, L.; Peng, J.; Hou, M. Increased cytotoxic T-lymphocyte-mediated cytotoxicity predominant in patients with idiopathic thrombocytopenic purpura without platelet autoantibodies. Haematologica 2008, 93, 1428–1430. [Google Scholar] [CrossRef]
- Qiu, J.; Liu, X.; Li, X.; Zhang, X.; Han, P.; Zhou, H.; Shao, L.; Hou, Y.; Min, Y.; Kong, Z.; et al. CD8+ T cells induce platelet clearance in the liver via platelet desialylation in immune thrombocytopenia. Sci. Rep. 2016, 6, 27445. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.; Sayed, A.A.; Han, P.; Tan, M.M.H.; Watt, E.; Constantinescu-Bercu, A.; Cocker, A.T.H.; Khoder, A.; Saputil, R.C.; Thorley, E.V.; et al. The role of CD8+ T cell clones in immune thrombocytopenia. Blood 2023, 141, 2417–2429. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, L.; Zhao, C.; Li, L.; Peng, J.; Hou, M. CD8+ T cells suppress autologous megakaryocyte apoptosis in idiopathic thrombocytopenic purpura. Br. J. Haematol. 2007, 139, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Vrbensky, J.R.; Nazy, I.; Toltl, L.J.; Ross, C.; Ivetic, N.; Smith, J.W.; Kelton, J.G.; Arnold, D.M. Megakaryocyte apoptosis in immune thrombocytopenia. Platelets 2018, 29, 729–732. [Google Scholar] [CrossRef]
- Choi, P.Y.; Merriman, E.; Bennett, A.; Enjeti, A.K.; Tan, C.W.; Goncalves, I.; Hsu, D.; Bird, R. Consensus guidelines for the management of adult immune thrombocytopenia in Australia and New Zealand. Med. J. Aust. 2022, 216, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, K.; Tani, P.; Piro, L.; McMillan, R. The effect of therapy on platelet-associated autoantibody in chronic immune thrombocytopenic purpura. Blood 1993, 81, 2872–2877. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xu, L.; Hao, H.; Jansen, A.J.G.; Liu, G.; Li, H.; Liu, X.; Zhao, Y.; Peng, J.; Hou, M. First line treatment of adult patients with primary immune thrombocytopenia: A real-world study. Platelets 2020, 31, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Cragg, M.S.; Walshe, C.A.; Ivanov, A.O.; Glennie, M.J. The biology of CD20 and its potential as a target for mAb therapy. Curr. Dir. Autoimmun. 2005, 8, 140–174. [Google Scholar] [CrossRef] [PubMed]
- Arnold, D.M.; Vrbensky, J.R.; Karim, N.; Smith, J.W.; Liu, Y.; Ivetic, N.; Kelton, J.G.; Nazy, I. The effect of rituximab on anti-platelet autoantibody levels in patients with immune thrombocytopenia. Br. J. Haematol. 2017, 178, 302–307. [Google Scholar] [CrossRef]
- Szczepanik, A.B.; Sikorska, A.; Slomkowski, M.; Konopka, L. The use of vinca alkaloids in preparation for splenectomy of corticosteroid refractory chronic immune thrombocytopenic purpura patients. Int. J. Lab. Hematol. 2007, 29, 347–351. [Google Scholar] [CrossRef]
- Quiquandon, I.; Fenaux, P.; Caulier, M.T.; Pagniez, D.; Huart, J.J.; Bauters, F. Re-evaluation of the role of azathioprine in the treatment of adult chronic idiopathic thrombocytopenic purpura: A report on 53 cases. Br. J. Haematol. 1990, 74, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Kuter, D.J.; Efraim, M.; Mayer, J.; Trněný, M.; McDonald, V.; Bird, R.; Regenbogen, T.; Garg, M.; Kaplan, Z.; Tzvetkov, N.; et al. Rilzabrutinib, an Oral BTK Inhibitor, in Immune Thrombocytopenia. N. Engl. J. Med. 2022, 386, 1421–1431. [Google Scholar] [CrossRef] [PubMed]
- Ware, R.E.; Zimmerman, S.A. Anti-D: Mechanisms of action. Semin. Hematol. 1998, 35, 14–22. [Google Scholar] [PubMed]
- Bradbury, C.A.; Pell, J.; Hill, Q.; Bagot, C.; Cooper, N.; Ingram, J.; Breheny, K.; Kandiyali, R.; Rayment, R.; Evans, G.; et al. Mycophenolate Mofetil for First-Line Treatment of Immune Thrombocytopenia. N. Engl. J. Med. 2021, 385, 885–895. [Google Scholar] [CrossRef]
- Choi, P.Y.; Roncolato, F.; Badoux, X.; Ramanathan, S.; Ho, S.J.; Chong, B.H. A novel triple therapy for ITP using high-dose dexamethasone, low-dose rituximab, and cyclosporine (TT4). Blood 2015, 126, 500–503. [Google Scholar] [CrossRef]
- Kuter, D.J. Novel therapies for immune thrombocytopenia. Br. J. Haematol. 2022, 196, 1311–1328. [Google Scholar] [CrossRef]
- Semple, J.W.; Provan, D. The immunopathogenesis of immune thrombocytopenia: T cells still take center-stage. Curr. Opin. Hematol. 2012, 19, 357–362. [Google Scholar] [CrossRef]
- Dameshek, W.; Miller, E.B. The megakaryocytes in idiopathic thrombocytopenic purpura, a form of hypersplenism. Blood 1946, 1, 27–50. [Google Scholar] [CrossRef]
- Stahl, C.P.; Zucker-Franklin, D.; McDonald, T.P. Incomplete antigenic cross-reactivity between platelets and megakaryocytes: Relevance to ITP. Blood 1986, 67, 421–428. [Google Scholar] [CrossRef]
- Houwerzijl, E.J.; Blom, N.R.; van der Want, J.J.; Esselink, M.T.; Koornstra, J.J.; Smit, J.W.; Louwes, H.; Vellenga, E.; de Wolf, J.T. Ultrastructural study shows morphologic features of apoptosis and para-apoptosis in megakaryocytes from patients with idiopathic thrombocytopenic purpura. Blood 2004, 103, 500–506. [Google Scholar] [CrossRef]
- Iraqi, M.; Perdomo, J.; Yan, F.; Choi, P.Y.; Chong, B.H. Immune thrombocytopenia: Antiplatelet autoantibodies inhibit proplatelet formation by megakaryocytes and impair platelet production in vitro. Haematologica 2015, 100, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Lev, P.R.; Grodzielski, M.; Goette, N.P.; Glembotsky, A.C.; Espasandin, Y.R.; Pierdominici, M.S.; Contrufo, G.; Montero, V.S.; Ferrari, L.; Molinas, F.C.; et al. Impaired proplatelet formation in immune thrombocytopenia: A novel mechanism contributing to decreased platelet count. Br. J. Haematol. 2014, 165, 854–864. [Google Scholar] [CrossRef]
- Peerschke, E.I.; Andemariam, B.; Yin, W.; Bussel, J.B. Complement activation on platelets correlates with a decrease in circulating immature platelets in patients with immune thrombocytopenic purpura. Br. J. Haematol. 2010, 148, 638–645. [Google Scholar] [CrossRef]
- Najaoui, A.; Bakchoul, T.; Stoy, J.; Bein, G.; Rummel, M.J.; Santoso, S.; Sachs, U.J. Autoantibody-mediated complement activation on platelets is a common finding in patients with immune thrombocytopenic purpura (ITP). Eur. J. Haematol. 2012, 88, 167–174. [Google Scholar] [CrossRef]
- Peerschke, E.I.; Panicker, S.; Bussel, J. Classical complement pathway activation in immune thrombocytopenia purpura: Inhibition by a novel C1s inhibitor. Br. J. Haematol. 2016, 173, 942–945. [Google Scholar] [CrossRef]
- Stasi, R. Eltrombopag for the treatment of idiopathic thrombocytopenic purpura. Expert. Rev. Hematol. 2008, 1, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Kuter, D.J. New thrombopoietic growth factors. Blood 2007, 109, 4607–4616. [Google Scholar] [CrossRef]
- Cines, D.B.; Gernsheimer, T.; Wasser, J.; Godeau, B.; Provan, D.; Lyons, R.; Altomare, I.; Wang, X.; Lopez, A. Integrated analysis of long-term safety in patients with chronic immune thrombocytopaenia (ITP) treated with the thrombopoietin (TPO) receptor agonist romiplostim. Int. J. Hematol. 2015, 102, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Bussel, J.B.; Kuter, D.J.; Aledort, L.M.; Kessler, C.M.; Cuker, A.; Pendergrass, K.B.; Tang, S.; McIntosh, J. A randomized trial of avatrombopag, an investigational thrombopoietin-receptor agonist, in persistent and chronic immune thrombocytopenia. Blood 2014, 123, 3887–3894. [Google Scholar] [CrossRef]
- Broome, C.M.; Roth, A.; Kuter, D.J.; Scully, M.; Smith, R.; Wang, J.; Reuter, C.; Hobbs, W.E.; Daak, A.A.A. Safety and Efficacy of Classical Complement Pathway Inhibition with Sutimlimab in Chronic Immune Thrombocytopenia. Blood Adv. 2023, 7, 987–996. [Google Scholar] [CrossRef]
- Davies, B.E. Pharmacokinetics of oseltamivir: An oral antiviral for the treatment and prophylaxis of influenza in diverse populations. J. Antimicrob. Chemother. 2010, 65 (Suppl. 2), ii5–ii10. [Google Scholar] [CrossRef] [PubMed]
- Moscona, A. Neuraminidase inhibitors for influenza. N. Engl. J. Med. 2005, 353, 1363–1373. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Y.; Yu, Q.; Ye, Z.Q.; Sun, Y.; He, Q.; Li, X.M.; Zhang, W.; Luo, J.; Gu, X.; Zheng, X.; et al. A nonsynonymous SNP in human cytosolic sialidase in a small Asian population results in reduced enzyme activity: Potential link with severe adverse reactions to oseltamivir. Cell Res. 2007, 17, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Alioglu, B.; Tasar, A.; Ozen, C.; Selver, B.; Dallar, Y. An experience of oseltamivir phosphate (tamiflu) in a pediatric patient with chronic idiopathic thrombocytopenic purpura: A case report. Pathophysiol. Haemost. Thromb. 2010, 37, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Bigot, P.; Auffret, M.; Gautier, S.; Weinborn, M.; Ettahar, N.K.; Coupe, P. Unexpected platelets elevation in a patient with idiopathic thrombocytopenia treated with oseltamivir for influenza infection. Fundam. Clin. Pharmacol. 2016, 30, 483–485. [Google Scholar] [CrossRef]
- Álvarez-Román, M.T.; Rivas Pollmar, M.I.; Bernardino, J.I.; Lozano, M.L.; Martín-Salces, M.; Fernández-Bello, I.; Jiménez-Yuste, V.; Butta, N.V. Thrombopoietin receptor agonists in conjunction with oseltamivir for immune thrombocytopenia. AIDS 2016, 30, 1141–1142. [Google Scholar] [CrossRef]
- Sun, L.; Wang, J.; Shao, L.; Yuan, C.; Zhao, H.; Li, D.; Wang, Z.; Han, P.; Yu, Y.; Xu, M.; et al. Dexamethasone plus oseltamivir versus dexamethasone in treatment-naive primary immune thrombocytopenia: A multicentre, randomised, open-label, phase 2 trial. Lancet Haematol. 2021, 8, e289–e298. [Google Scholar] [CrossRef]
- Stasi, R.; Newland, A.C. ITP: A historical perspective. Br. J. Haematol. 2011, 153, 437–450. [Google Scholar] [CrossRef]
Comment | Reference; Year |
---|---|
Sialic acid is present on platelets; can be cleaved with neuraminidase | [26]; 1964 |
Desialylated rabbit platelets are rapidly cleared in vivo; no significant changes to platelet function in vitro | [23]; 1975 |
Injection of desialylated platelets induced platelet production. Authors suggested that thrombopoiesis may be regulated by uptake of desialylated platelets | [27]; 1980 |
Sialic acid removal shortens platelet lifespan in primates | [28]; 1993 |
Platelets lacking sialic acid are recognised by asialoglycoprotein receptors | [29]; 2009 |
Cold storage leads to platelet desialylation | [30]; 2012 |
Platelet desialylation by anti GPIb/IX antibody | [31]; 2014 |
Hepatic Ashwell–Morell receptor binds and removes desialylated platelets | [20]; 2015 |
Anti GPIbα, not anti GPIIb/IIIa antibodies, induced desialylation and hepatic platelet uptake in mice | [32]; 2015 |
ITP patient with anti GPIb/IX antibodies successfully treated with oseltamivir | [33]; 2015 |
TPO-RAs in combination with oseltamivir induced sustained platelet production in patients with anti GPIb antibodies | [34]; 2019 |
Plasma from patients with ITP affected the sialylation pattern of control platelets | [35]; 2019 |
Desialylation induced by anti GPIIb/IIIa antibodies and is FcγRIIa-dependent | [36,37]; 2020, 2021 |
Destruction of human platelets induced by anti-GPIIb/IIIa antibodies was prevented with oseltamivir in a humanised mouse model of ITP | [37,38]; 2021, 2022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, S.S.; Perdomo, J.S. Desialylation and Apoptosis in Immune Thrombocytopenia: Implications for Pathogenesis and Treatment. Curr. Issues Mol. Biol. 2024, 46, 11942-11956. https://doi.org/10.3390/cimb46110709
Zheng SS, Perdomo JS. Desialylation and Apoptosis in Immune Thrombocytopenia: Implications for Pathogenesis and Treatment. Current Issues in Molecular Biology. 2024; 46(11):11942-11956. https://doi.org/10.3390/cimb46110709
Chicago/Turabian StyleZheng, Shiying Silvia, and José Sail Perdomo. 2024. "Desialylation and Apoptosis in Immune Thrombocytopenia: Implications for Pathogenesis and Treatment" Current Issues in Molecular Biology 46, no. 11: 11942-11956. https://doi.org/10.3390/cimb46110709
APA StyleZheng, S. S., & Perdomo, J. S. (2024). Desialylation and Apoptosis in Immune Thrombocytopenia: Implications for Pathogenesis and Treatment. Current Issues in Molecular Biology, 46(11), 11942-11956. https://doi.org/10.3390/cimb46110709