Neuroprotective Effect of Ixeris dentata Extract on Trimethyltin-Induced Memory Impairment in Rats
Abstract
1. Introduction
2. Materials and Methods
2.1. Regents
2.2. Animals
2.3. Experimental Groups
2.4. Morris Water Maze
2.5. Immunohistochemistry
2.6. Statistical Analysis
3. Results
3.1. Effect of ID Extracts on TMT-Induced Memory Deficits in the Morris Water Maze Test
3.2. Effects of IXD Extracts on TMT-Induced Immunohistochemical Alterations of ChAT, CREB in the Hippocampus
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- DeTure, M.A.; Dickson, D.W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 2019, 14, 32. [Google Scholar]
- Passeri, E.; Elkhoury, K.; Morsink, M.; Broersen, K.; Linder, M.; Tamayol, A.; Malaplate, C.; Yen, F.T.; Arab-Tehrany, E. Alzheimer’s Disease: Treatment Strategies and Their Limitations. Int. J. Mol. Sci. 2022, 23, 13954. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, A.; Gupta, S.M.; Dwivedi, S.; Kumar, D.; Shaikh, M.F.; Negi, A. Preclinical Models for Alzheimer’s Disease: Past, Present, and Future Approaches. Acs Omega 2022, 7, 47504–47517. [Google Scholar] [CrossRef] [PubMed]
- Koda, T.; Kuroda, Y.; Imai, H. Protective effect of rutin against spatial memory impairment induced by trimethyltin in rats. Nutr. Res. 2008, 28, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.W.; Dyer, R.S. A time-course study of trimethyltin induced neuropathology in rats. Neurobehav. Toxicol. Teratol. 1983, 5, 443–459. [Google Scholar]
- Robertson, D.G.; Gray, R.H.; de la Iglesia, F.A. Quantitative assessment of trimethyltin induced pathology of the hippocampus. Toxicol. Pathol. 1987, 15, 7–17. [Google Scholar] [CrossRef]
- Vitale, P.; Librizzi, F.; Vaiana, A.C.; Capuana, E.; Pezzoli, M.; Shi, Y.; Romani, A.; Migliore, M.; Migliore, R. Different responses of mice and rats hippocampus CA1 pyramidal neurons to and -like inputs. Front. Cell Neurosci. 2023, 17, 1281932. [Google Scholar]
- Pham, H.T.N.; Phan, S.V.; Tran, H.N.; Phi, X.T.; Le, X.T.; Nguyen, K.M.; Fujiwara, H.; Yoneyama, M.; Ogita, K.; Yamaguchi, T.; et al. Bacopa monnieri (L.) Ameliorates Cognitive Deficits Caused in a Trimethyltin-Induced Neurotoxicity Model Mice. Biol. Pharm. Bull. 2019, 42, 1384–1393. [Google Scholar] [CrossRef]
- Jeong, E.S.; Bajgai, J.; You, I.S.; Rahman, M.H.; Fadriquela, A.; Sharma, S.; Kwon, H.U.; Lee, S.Y.; Kim, C.S.; Lee, K.J. Therapeutic Effects of Hydrogen Gas Inhalation on Trimethyltin-Induced Neurotoxicity and Cognitive Impairment in the C57BL/6 Mice Model. Int. J. Mol. Sci. 2021, 22, 13313. [Google Scholar] [CrossRef]
- Shin, S.A.; Lee, H.N.; Choo, G.S.; Kim, H.J.; Che, J.H.; Jung, J.Y. (Thunb. Ex Thunb.) Nakai Extract Inhibits Proliferation and Induces Apoptosis in Breast Cancer Cells through Akt/NF-B Pathways. Int. J. Mol. Sci. 2017, 18. [Google Scholar] [CrossRef]
- Jeon, Y.D.; Kee, J.Y.; Kim, D.S.; Han, Y.H.; Kim, S.H.; Kim, S.J.; Um, J.Y.; Hong, S.H. Effects of Ixeris dentata water extract and caffeic acid on allergic inflammation in vivo and in vitro. Bmc Complem. Altern. M. 2015, 15, 196. [Google Scholar] [CrossRef]
- Karki, S.; Park, H.J.; Nugroho, A.; Kim, E.J.; Jung, H.A.; Choi, J.S. Quantification of Major Compounds from Var. and Their Comparative Anti-Inflammatory Activity in Lipopolysaccharide-Stimulated RAW 264.7 Cells. J. Med. Food 2015, 18, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Mattila, P.; Kumpulainen, J. Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection. J. Agric. Food Chem. 2002, 50, 3660–3667. [Google Scholar] [CrossRef] [PubMed]
- Kivilompolo, M.; Oburka, V.; Hyotylainen, T. Comparison of GC-MS and LC-MS methods for the analysis of antioxidant phenolic acids in herbs. Anal. Bioanal. Chem. 2007, 388, 881–887. [Google Scholar] [CrossRef]
- Khan, K.A.; Kumar, N.; Nayak, P.G.; Nampoothiri, M.; Shenoy, R.R.; Krishnadas, N.; Rao, C.M.; Mudgal, J. Impact of caffeic acid on aluminium chloride-induced dementia in rats. J. Pharm. Pharmacol. 2013, 65, 1745–1752. [Google Scholar] [CrossRef]
- Oboh, G.; Agunloye, O.M.; Akinyemi, A.J.; Ademiluyi, A.O.; Adefegha, S.A. Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to Alzheimer’s disease and some pro-oxidant induced oxidative stress in rats’ brain-in vitro. Neurochem. Res. 2013, 38, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Wang, Q.; Choi, J.M.; Lee, S.; Cho, E.J. Protective role of caffeic acid in an Abeta25-35-induced Alzheimer’s disease model. Nutr. Res. Pract. 2015, 9, 480–488. [Google Scholar] [CrossRef]
- Minger, S.L.; Esiri, M.M.; McDonald, B.; Keene, J.; Carter, J.; Hope, T.; Francis, P.T. Cholinergic deficits contribute to behavioral disturbance in patients with dementia. Neurology 2000, 55, 1460–1467. [Google Scholar] [CrossRef]
- Yang, Z.Q.; Zou, Y.; Wang, L.F. Neurotransmitters in Prevention and Treatment of Alzheimer’s Disease. Int. J. Mol. Sci. 2023, 24, 3841. [Google Scholar] [CrossRef]
- Baskin, D.S.; Browning, J.L.; Pirozzolo, F.J.; Korporaal, S.; Baskin, J.A.; Appel, S.H. Brain choline acetyltransferase and mental function in Alzheimer disease. Arch. Neurol. 1999, 56, 1121–1123. [Google Scholar] [CrossRef]
- Serita, T.; Fukushima, H.; Kida, S. Constitutive activation of CREB in mice enhances temporal association learning and increases hippocampal CA1 neuronal spine density and complexity. Sci. Rep.-UK 2017, 7, 42528. [Google Scholar] [CrossRef] [PubMed]
- Pittenger, C.; Huang, Y.Y.; Paletzki, R.F.; Bourtchouladze, R.; Scanlin, H.; Vronskaya, S.; Kandel, E.R. Reversible inhibition of CREB/ATF transcription factors in region CA1 of the dorsal hippocampus disrupts hippocampus-dependent spatial memory. Neuron 2002, 34, 447–462. [Google Scholar] [CrossRef]
- Saura, C.A.; Valero, J. The role of CREB signaling in Alzheimer’s disease and other cognitive disorders. Rev. Neurosci. 2011, 22, 153–169. [Google Scholar]
- Paxinos, G.; Watson, C.; Pennisi, M.; Topple, A. Bregma, lambda and the interaural midpoint in stereotaxic surgery with rats of different sex, strain and weight. J. Neurosci. Methods 1985, 13, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.H.; Cha, K.S.; Han, J.Y.; Kim, H.J.; Kim, J.S. Effect of antioxidant probucol for preventing stent restenosis. Catheter. Cardiovasc. Interv. 2002, 57, 424–428. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.S.; Jeong, H.J.; Han, M.J.; Park, S.T.; Seong, K.K.; Baek, S.H.; Jeong, D.M.; Kim, M.J.; Kim, H.M. Nitric oxide and tumor necrosis factor-alpha production by Ixeris dentata in mouse peritoneal macrophages. J. Ethnopharmacol. 2002, 82, 217–222. [Google Scholar] [CrossRef]
- Saenno, R.; Dornlakorn, O.; Anosri, T.; Kaewngam, S.; Sirichoat, A.; Aranarochana, A.; Pannangrong, W.; Wigmore, P.; Welbat, J.U. Caffeic Acid Alleviates Memory and Hippocampal Neurogenesis Deficits in Aging Rats Induced by D-Galactose. Nutrients 2022, 14, 2169. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Park, J.S.; Kang, M.H.; Lee, H.J.; Ali, J.; Tahir, M.; Choe, K.; Kim, M.O. Caffeic Acid, a Polyphenolic Micronutrient Rescues Mice Brains against Aβ-Induced Neurodegeneration and Memory Impairment. Antioxidants 2023, 12, 1284. [Google Scholar] [CrossRef]
- Othman, M.Z.; Hassan, Z.; Che Has, A.T. Morris water maze: A versatile and pertinent tool for assessing spatial learning and memory. Exp. Anim. Tokyo 2021, 71, 264–280. [Google Scholar] [CrossRef]
- Ye, M.; Han, B.H.; Kim, J.S.; Kim, K.; Shim, I. Neuroprotective Effect of Bean Phosphatidylserine on TMT-Induced Memory Deficits in a Rat Model. Int. J. Mol. Sci. 2020, 21, 4901. [Google Scholar] [CrossRef]
- Wang, H.T.; Xu, J.P.; Lazarovici, P.; Quirion, R.H.; Zheng, W.H. cAMP Response Element-Binding Protein (CREB): A Possible Signaling Molecule Link in the Pathophysiology of Schizophrenia. Front. Mol. Neurosci. 2018, 11, 255. [Google Scholar]
- Amidfar, M.; de Oliveira, J.; Kucharska, E.; Budni, J.; Kim, Y.K. The role of CREB and BDNF in neurobiology and treatment of Alzheimer’s disease. Life Sci. 2020, 257, 118020. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, M.; Jang, D.; Lee, S.-y.; Kim, K.-R.; Rhie, S.J.; Oh, J.K.; Shim, I. Neuroprotective Effect of Ixeris dentata Extract on Trimethyltin-Induced Memory Impairment in Rats. Curr. Issues Mol. Biol. 2024, 46, 11772-11782. https://doi.org/10.3390/cimb46110699
Ye M, Jang D, Lee S-y, Kim K-R, Rhie SJ, Oh JK, Shim I. Neuroprotective Effect of Ixeris dentata Extract on Trimethyltin-Induced Memory Impairment in Rats. Current Issues in Molecular Biology. 2024; 46(11):11772-11782. https://doi.org/10.3390/cimb46110699
Chicago/Turabian StyleYe, Minsook, Daehyuk Jang, Sun-young Lee, Kyu-Ri Kim, Sung Ja Rhie, Jin Kyung Oh, and Insop Shim. 2024. "Neuroprotective Effect of Ixeris dentata Extract on Trimethyltin-Induced Memory Impairment in Rats" Current Issues in Molecular Biology 46, no. 11: 11772-11782. https://doi.org/10.3390/cimb46110699
APA StyleYe, M., Jang, D., Lee, S.-y., Kim, K.-R., Rhie, S. J., Oh, J. K., & Shim, I. (2024). Neuroprotective Effect of Ixeris dentata Extract on Trimethyltin-Induced Memory Impairment in Rats. Current Issues in Molecular Biology, 46(11), 11772-11782. https://doi.org/10.3390/cimb46110699