SNPs Sets in Codifying Genes for Xenobiotics-Processing Enzymes Are Associated with COPD Secondary to Biomass-Burning Smoke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population Included
2.2. Biological Samples
2.3. Whole Exome Genotyping
2.4. Data Analysis
2.5. Severity Analysis
2.6. Multiple Correspondence Analysis
2.7. Calculation of Haplotype Blocks
3. Results
3.1. Population Studied
3.2. Association Analysis in the Group of Smokers
3.3. Severity Analysis
3.4. Association Analysis in the Group Exposed to BBS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Inititiative for Chronic Obstructive Lung Disease (GOLD). Global Inititiative for Chronic Obstructive Lung Disease; GOLD: Deer Park, IL, USA, 2017; pp. 1–139. [Google Scholar]
- de Oca, M.M.; López Varela, M.V.; Acuña, A.; Schiavi, E.; Rey, M.A.; Jardim, J.; Casas, A.; Tokumoto, A.; Torres Duque, C.A.; Ramírez-Venegas, A.; et al. ALAT-2014 Chronic Obstructive Pulmonary Disease (COPD) Clinical Practice Guidelines: Questions and Answers. Arch. Bronconeumol. 2015, 51, 403–416. [Google Scholar] [CrossRef]
- OMS | Enfermedad Pulmonar Obstructiva Crónica (EPOC). World Health Organization. 2015. Available online: http://www.who.int/mediacentre/factsheets/fs315/es/ (accessed on 18 August 2016).
- Mathers, C.D.; Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006, 3, 2011–2030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvar Agusti, R.B.; Chen, R.; Gerard, C.; Frith, P.; Halpin, D. Global Initiative for Chronic Obstructive Lung Disease Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease (2018 Report). 2018, p. 142. Available online: https://goldcopd.org/wp-content/uploads/2018/11/GOLD-2019-v1.7-FINAL-14Nov2018-WMS.pdf (accessed on 14 July 2019).
- Mukherjee, S.; Roychoudhury, S.; Siddique, S.; Banerjee, M.; Bhattacharya, P.; Lahiri, T.; Ray, M.R. Respiratory symptoms, lung function decrement and chronic obstructive pulmonary disease in pre-menopausal Indian women exposed to biomass smoke. Inhal. Toxicol. 2014, 26, 866–872. [Google Scholar] [CrossRef] [PubMed]
- Golpe, R.; Mengual-Macenlle, N.; Sanjuán-López, P.; Cano-Jiménez, E.; Castro-Añón, O.; Pérez-De-Llano, L.A. Prognostic Indices and Mortality Prediction in COPD Caused by Biomass Smoke Exposure. Lung 2015, 193, 497–503. [Google Scholar] [CrossRef]
- Shaikh, M.; Sood, R.G.; Sarkar, M.; Thakur, V. Quantitative Computed Tomography (CT) Assessment of Emphysema in Patients with Severe Chronic Obstructive Pulmonary Disease (COPD) and its Correlation with Age, Sex, Pulmonary Function Tests, BMI, Smoking, and Biomass Exposure. Pol. J. Radiol. 2017, 82, 760–766. [Google Scholar] [CrossRef]
- Ghosh, B.; Gaike, A.H.; Pyasi, K.; Brashier, B.; Das, V.V.; Londhe, J.D.; Juvekar, S.; Shouche, Y.S.; Donnelly, L.E.; Salvi, S.S.; et al. Bacterial load and defective monocyte-derived macrophage bacterial phagocytosis in biomass smoke-related COPD. Eur. Respir. J. 2018, 53, 1702273. [Google Scholar] [CrossRef]
- Stoller, J.K.; Aboussouan, L.S. Alpha1-antitrypsin deficiency. Lancet 2005, 365, 2225–2236. [Google Scholar] [CrossRef]
- Wan, E.S.; Cho, M.H.; Boutaoui, N.; Klanderman, B.J.; Sylvia, J.S.; Ziniti, J.P.; Won, S.; Lange, C.; Pillai, S.G.; Anderson, W.H.; et al. Genome-wide association analysis of body mass in chronic obstructive pulmonary disease. Am. J. Respir. Cell Mol. Biol. 2011, 45, 304–310. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.K.; Hersh, C.P.; Washko, G.R.; Hokanson, J.E.; Lynch, D.A.; Newell, J.D.; Murphy, J.R.; Crapo, J.D.; Silverman, E.K. Epidemiology, radiology, and genetics of nicotine dependence in COPD. Respir. Res. 2011, 12, 9. [Google Scholar] [CrossRef] [Green Version]
- Thorgeirsson, T.E.; Gudbjartsson, D.F.; Surakka, I.; Vink, J.M.; Amin, N.; Geller, F.; Sulem, P.; Rafnar, T.; Esko, T.; Walter, S.; et al. Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior. Nat. Genet. 2010, 42, 448–453. [Google Scholar] [CrossRef]
- Teramoto, S. Recent progress in genetic background of chronic obstructive pulmonary disease (COPD). Nihon Rinsho 2016, 74, 733–742. [Google Scholar]
- Jackson, V.E.; Ntalla, I.; Sayers, I.; Morris, R.; Whincup, P.; Casas, J.P.; Amuzu, A.; Choi, M.; Dale, C.; Kumari, M.; et al. Exome-wide analysis of rare coding variation identifies novel associations with COPD and airflow limitation in MOCS3, IFIT3 and SERPINA12. Thorax 2016, 71, 501–509. [Google Scholar] [CrossRef] [Green Version]
- Cha, S.I.; Kang, H.-G.; Choi, J.E.; Kim, M.J.; Park, J.; Lee, W.K.; Kim, C.H.; Jung, T.H.; Park, J.Y. SERPINE2 polymorphisms and chronic obstructive pulmonary disease. J. Korean Med Sci. 2009, 24, 1119–1125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanbaeva, D.G.; Dentener, M.A.; Spruit, M.A.; Houwing-Duistermaat, J.J.; Kotz, D.; Passos, V.L.; Wouters, E.F. IL6 and CRP haplotypes are associated with COPD risk and systemic inflammation: A case-control study. BMC Med. Genet. 2009, 10, 23. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Venegas, A.; Velázquez-Uncal, M.; Pérez-Hernández, R.; Guzmán-Bouilloud, N.E.; Falfán-Valencia, R.; Mayar-Maya, M.E.; Aranda-Chávez, A.; Sansores, R.H. Prevalence of COPD and respiratory symptoms associated with biomass smoke exposure in a suburban area. Int. J. Chronic Obstr. Pulm. Dis. 2018, 13, 1727–1734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GOLD 2021. Global Initiative for Chronic Obstructive Lung Disease: Pocket Guide To COPD Diagnosis, Management, and Prevention, A Guide for Health Care Professionals. Gold 2021. pp. 1–33. Available online: https://goldcopd.org/wp-content/uploads/2020/11/GOLD-2021-POCKET-GUIDE-v1.0-16Nov20_WMV.pdf (accessed on 27 April 2021).
- Ambrocio-Ortiz, E.; Pérez-Rubio, G.; Abarca-Rojano, E.; Montaño, M.; Ramos, C.; Hernández-Zenteno, R.D.; Del Angel-Pablo, A.D.; Reséndiz-Hernández, J.M.; Ramírez-Venegas, A.; Falfán-Valencia, R. Influence of proinflammatory cytokine gene polymorphisms on the risk of COPD and the levels of plasma protein. Cytokine 2018, 111, 364–370. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. European Environment Agency. 2020. Available online: https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006 (accessed on 5 February 2022).
- R Studio Team. Available online: http://www.rstudio.com/ (accessed on 4 February 2022).
- Huerta-Chagoya, A.; Moreno-Macías, H.; Fernández-López, J.C.; Ordóñez-Sánchez, M.L.; Rodríguez-Guillén, R.; Contreras, A.V.; Hidalgo-Miranda, A.; Alfaro-Ruíz, L.A.; Salazar-Fernandez, E.P.; Moreno-Estrada, A.; et al. A Panel of 32 AIMs Suitable for Population Stratification Correction and Global Ancestry Estimation in Mexican Mestizos 06 Biological Sciences 0604 Genetics. BMC Genet. 2019, 20, 5. Available online: https://bmcgenomdata.biomedcentral.com/articles/10.1186/s12863-018-0707-7 (accessed on 8 January 2023). [CrossRef] [PubMed]
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 2008, 25, 1–18. Available online: https://cran.r-project.org/package=FactoMineR (accessed on 19 September 2022). [CrossRef] [Green Version]
- Kassambara, A.; Mundt, F. Factoextra: Extract and visualize the results of multivariate data analyses. 2017, pp. 1–76. Available online: http//www.sthda.com/english/rpkgs/factoextraBugReports; https://cran.r-project.org/package=factoextra (accessed on 19 September 2022).
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef] [Green Version]
- Gabriel, S.B.; Schaffner, S.F.; Nguyen, H.; Moore, J.M.; Roy, J.; Blumenstiel, B.; Higgins, J.; DeFelice, M.; Lochner, A.; Faggart, M.; et al. The structure of haplotype blocks in the human genome. Science 2002, 296, 2225–2229. Available online: http://www.sciencemag.org/cgi/doi/10.1126/science.1069424 (accessed on 4 September 2019). [CrossRef]
- Pérez-Rubio, G.; Falfán-Valencia, R.; Fernández-López, J.; Ramírez-Venegas, A.; Hernández-Zenteno, R.; Flores-Trujillo, F.; Silva-Zolezzi, I. Genetic Factors Associated with COPD Depend on the Ancestral Caucasian/Amerindian Component in the Mexican Population. Diagnostics 2021, 11, 599. [Google Scholar] [CrossRef]
- Pérez-Rubio, G.; Silva-Zolezzi, I.; Fernández-López, J.C.; Camarena, Á.; Velázquez-Uncal, M.; Morales-Mandujano, F.; Hernández-Zenteno, R.D.J.; Flores-Trujillo, F.; Sánchez-Romero, C.; Velázquez-Montero, A.; et al. Genetic Variants in IL6R and ADAM19 are Associated with COPD Severity in a Mexican Mestizo Population. COPD 2016, 13, 610–615. [Google Scholar] [CrossRef] [PubMed]
- OMS. Contaminación del aire de Interiores y Salud; OMS: Geneva, Switzerland, 2018. [Google Scholar] [CrossRef]
- Rehfuess, E.A.; Puzzolo, E.; Stanistreet, D.; Pope, D.; Bruce, N.G. Enablers and Barriers to Large-Scale Uptake of Improved Solid Fuel Stoves: A Systematic Review. Environ. Health Perspect. 2014, 122, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Padilla, J.R.; Regalado-Pineda, J.; Morán-Mendoza, A.O. The domestic inhalation of the smoke from firewood and of other biological materials. A risk for the development of respiratory diseases. Gac. Med. de Mex. 1999, 135, 19–29. [Google Scholar]
- Espin-Garcia, O.; Craiu, R.V.; Bull, S.B. Two-phase sample selection strategies for design and analysis in post-genome-wide association fine-mapping studies. Stat. Med. 2021, 40, 6792–6817. [Google Scholar] [CrossRef]
- Los Xenobióticos. Available online: https://centrosconacyt.mx/noticia/los-xenobioticos/ (accessed on 9 October 2021).
- Hayes, J.D.; Flanagan, J.U.; Jowsey, I.R. Glutathione transferases. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 51–88. [Google Scholar] [CrossRef]
- van Schaik, R.H.N. CYP450 pharmacogenetics for personalizing cancer therapy. Drug Resist. Updates 2008, 11, 77–98. [Google Scholar] [CrossRef]
- Shinde, R.; McGaha, T.L. The Aryl Hydrocarbon Receptor: Connecting Immunity to the Microenvironment. Trends Immunol. 2018, 39, 1005–1020. [Google Scholar] [CrossRef]
- Strosberg, A.D. Structure, function, and regulation of adrenergic receptors. Protein Sci. 1993, 2, 1198–1209. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Yang, Y.; Chen, X.; Wu, C.; Zhao, J.; Feng, Q.; Zhou, X.; Xu, D.; Li, Q.; Niu, H.; et al. Influence of the CYP2J2 Gene Polymorphisms on Chronic Obstructive Pulmonary Disease Risk in the Chinese Han Population. Arch. Bronconeumol. 2020, 56, 697–703. [Google Scholar] [CrossRef]
- Akhmadishina, L.A.; Korytina, G.F.; Victorova, T.V. Polymorphic markers of the CYP1B1 (4326C > G), CYP2F1 (c.14_15insC), CYP2J2 (-76G > T), and CYP2S1 (13106C > T and 13255A > G) genes and genetic predisposition to chronic respiratory diseases induced by smoking and occupational factors. Genetika 2011, 47, 1402–1410. [Google Scholar] [PubMed]
- Kamata, S.; Fujino, N.; Yamada, M.; Grime, K.; Suzuki, S.; Ota, C.; Tando, Y.; Okada, Y.; Sakurada, A.; Noda, M.; et al. Expression of cytochrome P450 mRNAs in Type II alveolar cells from subjects with chronic obstructive pulmonary disease. Pharmacol. Res. Perspect. 2018, 6, e00405. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, J.; Peng, W.; Shu, Y.; Mo, X. Cytochrome P450 Epoxygenase 2J2 Protects Against Lung Ischemia/Reperfusion Injury by Activating the P13K/Akt/GSK-3-β/NF-kB Signaling Pathway During Deep Hypothermic Low Flow in Mice. J. Surg. Res. 2020, 253, 8–17. [Google Scholar] [CrossRef]
- Hukkanen, J.; Pelkonen, O.; Hakkola, J.; Raunio, H. Expression and regulation of xenobiotic-metabolizing cytochrome P450 (CYP) enzymes in human lung. Crit. Rev. Toxicol. 2002, 32, 391–411. [Google Scholar] [CrossRef] [PubMed]
- Rubin, K.; Ewing, P.; Bäckström, E.; Abrahamsson, A.; Bonn, B.; Kamata, S.; Grime, K. Pulmonary metabolism of substrates for key drug-metabolizing enzymes by human alveolar type ii cells, human and rat lung microsomes, and the isolated perfused rat lung model. Pharmaceutics 2020, 12, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Zheng, G.; Yang, S.; Ping, W.; Fu, X.; Zhang, N.; Wang, D.W.; Wang, J. CYP2J2 and EETs protect against oxidative stress and apoptosis in vivo and in vitro following lung ischemia/reperfusion. Cell. Physiol. Biochem. 2014, 35, 1663–1680. [Google Scholar] [CrossRef] [PubMed]
- London, S.J.; Daly, A.K.; Leathart, J.B.; Navidi, W.C.; Idle, J.R. Lung cancer risk in relation to the CYP2C9*1/CYP2C9*2 genetic polymorphism among African-Americans and Caucasians in Los Angeles County, California. Pharmacogenetics 1996, 6, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Sausville, L.N.; Gangadhariah, M.H.; Chiusa, M.; Mei, S.; Wei, S.; Zent, R.; Luther, J.M.; Shuey, M.M.; Capdevila, J.H.; Falck, J.R.; et al. The cytochrome P450 slow metabolizers CYP2C92 and CYP2C93 directly regulate tumorigenesis via reduced epoxyeicosatrienoic acid production. Cancer Res. 2018, 78, 4865–4877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, W.; Bentley, A.R.; Kritchevsky, S.B.; Harris, T.B.; Newman, A.B.; Bauer, D.C.; Meibohm, B.; Cassano, P.A. Genetic variation in antioxidant enzymes, cigarette smoking, and longitudinal change in lung function. Free Radic. Biol. Med. 2013, 63, 304–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awji, E.G.; Chand, H.; Bruse, S.; Smith, K.R.; Colby, J.K.; Mebratu, Y.; Levy, B.D.; Tesfaigzi, Y. Wood smoke enhances cigarette smoke-induced inflammation by inducing the aryl hydrocarbon receptor repressor in airway epithelial cells. Am. J. Respir. Cell Mol. Biol. 2015, 52, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Ji, N.; Wang, Z.; Wu, C.; Sun, Z.; Li, Y.; Hu, F.; Wang, Z.; Huang, M.; Zhang, M. Fine particulate matter (PM25) promoted the invasion of lung cancer cells via an ARNT2/PP2A/STAT3/MMP2 Pathway. J. Biomed. Nanotechnol. 2018, 14, 2172–2184. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Yang, E.; Liao, H.; Wang, Z.; Den, Z.; Ren, H. ARNT2 is downregulated and serves as a potential tumor suppressor gene in non-small cell lung cancer. Tumor Biol. 2015, 36, 2111–2119. [Google Scholar] [CrossRef]
- Drutel, G.; Kathmann, M.; Héron, A.; Gros, C.; Macé, S.; Schwartz, J.; Arrang, J. Two splice variants of the hypoxia-inducible factor HIF-1α as potential dimerization partners of ARNT2 in neurons. Eur. J. Neurosci. 2000, 12, 3701–3708. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xu, C.; Gao, Y.; Wang, Y.; Ding, Z.; Zhang, Y.; Shen, W.; Zheng, Y.; Wan, Y. A Novel Long Non-coding RNA, MSTRG.51053.2 Regulates Cisplatin Resistance by Sponging the miR-432-5p in Non-small Cell Lung Cancer Cells. Front. Oncol. 2020, 10, 215. [Google Scholar] [CrossRef] [PubMed]
- Zeng, B.; Ge, C.; Li, R.; Zhang, Z.; Fu, Q.; Li, Z.; Lin, Z.; Liu, L.; Xue, Y.; Xu, Y.; et al. Knockdown of microsomal glutathione S-transferase 1 inhibits lung adenocarcinoma cell proliferation and induces apoptosis. Biomed. Pharmacother. 2019, 121, 109562. [Google Scholar] [CrossRef]
- Woldhuis, R.R.; De Vries, M.; Timens, W.; van den Berge, M.; DeMaria, M.; Oliver, B.G.G.; Heijink, I.H.; Brandsma, C.-A. Link between increased cellular senescence and extracellular matrix changes in COPD. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2020, 319, L48–L60. [Google Scholar] [CrossRef]
- Sauler, M.; McDonough, J.E.; Adams, T.S.; Kothapalli, N.; Barnthaler, T.; Werder, R.B.; Schupp, J.C.; Nouws, J.; Robertson, M.J.; Coarfa, C.; et al. Characterization of the COPD Alveolar Niche Using Single-Cell RNA Sequencing. Nat. Commun. 2022, 13, 394. Available online: https://www.nature.com/articles/s41467-022-28062-9 (accessed on 20 March 2020). [CrossRef]
- Francis, S.M.S.; Larsen, J.E.; Pavey, S.J.; Bowman, R.V.; Hayward, N.K.; Fong, K.M.; Yang, I.A. Expression Profiling Identifies Genes Involved in Emphysema Severity. Respir. Res. 2009, 10, 81. Available online: http://respiratory-research.biomedcentral.com/articles/10.1186/1465-9921-10-81 (accessed on 9 January 2023). [CrossRef] [Green Version]
- Kukkonen, M.K.; Hämäläinen, S.; Kaleva, S.; Vehmas, T.; Huuskonen, M.S.; Oksa, P.; Vainio, H.; Piirilä, P.; Hirvonen, A. Genetic Polymorphisms of Xenobiotic-Metabolizing Enzymes Influence the Risk of Pulmonary Emphysema. Pharm. Genom. 2011, 21, 876–883. Available online: https://journals.lww.com/01213011-201112000-00012 (accessed on 9 January 2023). [CrossRef] [PubMed]
- D’Amelio, A.M.; Monroy, C.; El-Zein, R.; Etzel, C.J. Using haplotype analysis to elucidate significant associations between genes and Hodgkin lymphoma. Leuk. Res. 2012, 36, 1359–1364. [Google Scholar] [CrossRef]
- Hou, Z.F.; Yuan, Z.H.; Chang, K.; Cao, Y.H.; Guan, F.X.; Gao, Y. NLRP3 rs1539019 is significantly associated with chronic obstructive pulmonary disease in a Chinese Han population: A case-control study. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 5821–5828. [Google Scholar] [PubMed]
- Mahesworo, B.; Budiarto, A.; Hidayat, A.A.; Pardamean, B. Cancer Risk Score Prediction Based on a Single-Nucleotide Polymorphism Network. Healthc. Inform. Res. 2022, 28, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, Q.; Dong, L.; Xiong, M.; Jiang, H.; Guo, M.; Zhao, L.; Yuan, L.; Li, Z.; Liu, H.; et al. The effects of CXCL10 polymorphisms on COPD susceptibility. Mol. Genet. Genom. 2017, 293, 649–655. [Google Scholar] [CrossRef]
- Hosgood, H.D., III; Díaz-Peña, R.; Blansky, D.; Jaime, S.; Parra, V.; Boekstegers, F.; Bermejo, J.L.; García-Valero, J.; Montes, J.F.; Valdivia, G.; et al. PRDM15 Is Associated with Risk of Chronic Obstructive Pulmonary Disease in a Rural Population in Chile. Respiration 2020, 99, 307–315. [Google Scholar] [CrossRef]
- Ramírez-Venegas, A.; Torres-Duque, C.A.; Guzmán-Bouilloud, N.E.; González-García, M.; Sansores, R.H. Small Airway Disease in COPD Associated to Biomass Exposure. Rev. Investig. Clin. 2019, 71, 70–78. [Google Scholar] [CrossRef]
- Rico de Souza, A.; Traboulsi, H.; Wang, X.; Fritz, J.H.; Eidelman, D.H.; Baglole, C.J. The Aryl Hydrocarbon Receptor Attenuates Acute Cigarette Smoke-Induced Airway Neutrophilia Independent of the Dioxin Response Element. Front. Immunol. 2021, 12, 630427. [Google Scholar] [CrossRef]
- Guerrina, N.; Traboulsi, H.; de Souza, A.R.; Bossé, Y.; Thatcher, T.H.; Robichaud, A.; Ding, J.; Li, P.Z.; Simon, L.; Pareek, S.; et al. Aryl hydrocarbon receptor deficiency causes the development of chronic obstructive pulmonary disease through the integration of multiple pathogenic mechanisms. FASEB J. 2021, 35, e21376. [Google Scholar] [CrossRef]
- Alessandrini, F.; de Jong, R.; Wimmer, M.; Maier, A.-M.; Fernandez, I.; Hils, M.; Buters, J.T.; Biedermann, T.; Zissler, U.M.; Hoffmann, C.; et al. Lung Epithelial CYP1 Activity Regulates Aryl Hydrocarbon Receptor Dependent Allergic Airway Inflammation. Front. Immunol. 2022, 13, 901194. [Google Scholar] [CrossRef]
- Park, H.A.; Edelmann, D.; Canzian, F.; Harrison, T.A.; Hua, X.; Shi, Q.; Silverman, A.; Schneider, M.; Goldberg, R.M.; Alberts, S.R.; et al. Predictive Polygenic Score for Outcome after First-Line Oxaliplatin-Based Chemotherapy in Colorectal Cancer Patients Using Supervised Principal Component Analysis. Cancer Epidemiol. Biomark. Prev. 2022, 31, 2087–2091. [Google Scholar] [CrossRef]
- Ortega-Martínez, A.; Pérez-Rubio, G.; Ambrocio-Ortiz, E.; Nava-Quiroz, K.J.; Hernández-Zenteno, R.D.J.; Abarca-Rojano, E.; Rodríguez-Llamazares, S.; Hernández-Pérez, A.; García-Gómez, L.; Ramírez-Venegas, A.; et al. The SNP rs13147758 in the HHIP Gene Is Associated With COPD Susceptibility, Serum, and Sputum Protein Levels in Smokers. Front. Genet. 2020, 11, 882. [Google Scholar] [CrossRef]
- Ambrocio-Ortiz, E.; Pérez-Rubio, G.; Ramírez-Venegas, A.; Hernández-Zenteno, R.; Paredes-López, A.; Sansores, R.; Ramírez-Díaz, M.; Cruz-Vicente, F.; Martínez-Gómez, M.; Falfán-Valencia, R. Protective Role of Genetic Variants in HSP90 Genes-Complex in COPD Secondary to Biomass-Burning Smoke Exposure and Non-Severe COPD Forms in Tobacco Smoking Subjects. Curr. Issues Mol. Biol. 2021, 43, 887–899. [Google Scholar] [CrossRef] [PubMed]
- Powell, R.; Barr, R.G. Response letter to: The Hispanic paradox further unraveled? Thorax 2014, 69, 185–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mroziewicz, M.; Tyndale, R.F. Pharmacogenetics: A tool for identifying genetic factors in drug dependence and response to treatment. Addict. Sci. Clin. Pract. 2010, 5, 17–29. [Google Scholar] [PubMed]
COPD-S (n = 141) | SOWC (n = 213) | p | COPD-BBS (n = 98) | BBES (n = 293) | p | |
---|---|---|---|---|---|---|
Demographic data | ||||||
Sex (M/W)% | 73.7/26.3 | 51.8/48.2 | <0.01 † | 90/10 | 99.3/0.7 | 0.57 † |
Age (Years) | 68 (62–74) | 51 (44–58) | <0.01 | 73 (68–78) | 61 (54–69) | <0.01 |
BMI (Kg/m2) | 25.5 (22.7–29.3) | 27.6 (25.0–30.1) | 0.04 | 26.1 (23.0–31.2) | 27.6 (24.7–30.8) | 0.09 |
Tobacco smoking data | ||||||
Cigarette per day (cig/day) | 20 (12–30) | 16 (10–21) | 0.64 | |||
Years of smoking (Years) | 41 (32.0–50.0) | 30 (24.0–37.5) | <0.01 | |||
TI (pack/year) | 40 (21.0–54.5) | 25 (16.5–39.0) | <0.01 | |||
Biomass-burning smoke exposure data | ||||||
Hours or exposition (h/day) | 12 (10.0–15.0) | 10 (10.0–12.0) | <0.01 | |||
Years of exposition (years) | 50 (33.5–60.0) | 40 (15.0–53.0) | <0.01 | |||
BBS smoke exposition index (BEI) | 453.0 (350.0–600.0) | 400.0 (150.0–530.0) | <0.01 | |||
Lung function data (post-bronchodilator) | ||||||
FEV1 (%) | 58.0 (43.0–76.0) | 96.5 (86.0–106.0) | <0.01 | 68.0 (54.0–81.0) | 103.0 (93.0–115.0) | <0.01 |
FVC (%) | 83.0 (71.0–98.0) | 91.5 (86.0–104.0) | <0.01 | 87.0 (74.0–100.0) | 99.0 (87.0–110.5) | <0.01 |
FEV1/FVC (%) | 57.6 (44.9–64.9) | 81.5 (78.0–85.4) | <0.01 | 60.7 (50.9–67.0) | 84.5 (78.0–93.6) | <0.01 |
GOLD state% | ||||||
GOLD I (%) | 15 (11.1) | 28 (32.2) | NA | |||
GOLD II (%) | 73 (54.1) | 47 (54.0) | NA | |||
GOLD III (%) | 33 (24.4) | 11 (12.6) | NA | |||
GOLD IV (%) | 14 (10.4) | 1 (1.2) | NA |
SNP/Alleles | COPD-S (n = 141) | AF% | SWOC (n = 213) | AF% | OR | CI (95%) | p | p * |
---|---|---|---|---|---|---|---|---|
rs11572191/CYP2J2 | ||||||||
C | 245 | 86.88 | 401 | 94.13 | 1.00 (Ref.) | |||
T | 37 | 13.12 | 25 | 5.87 | 2.96 | 1.67–5.26 | 0.0002 | NS |
rs8133/MGST3 | ||||||||
G | 197 | 69.86 | 335 | 78.64 | 1.00 (Ref.) | |||
T | 85 | 30.14 | 91 | 21.36 | 1.48 | 1.05–2.08 | 0.026 | NS |
rs4147611/MGST3 | ||||||||
G | 163 | 57.80 | 205 | 48.12 | 1.00 (Ref.) | |||
T | 119 | 42.20 | 221 | 51.88 | 0.71 | 0.52–0.96 | 0.026 | NS |
rs17497857/ARNTL2 | ||||||||
T | 246 | 87.23 | 392 | 92.02 | 1.00 (Ref.) | |||
A | 36 | 12.77 | 34 | 7.98 | 1.75 | 1.03–2.96 | 0.037 | NS |
rs4964059/ARNTL2 | ||||||||
A | 217 | 76.95 | 352 | 82.63 | 1.00 (Ref.) | |||
C | 65 | 23.05 | 74 | 17.37 | 1.50 | 1.01–2.24 | 0.047 | NS |
rs3742377/CYP46A1 | ||||||||
G | 240 | 85.11 | 336 | 78.87 | 1.00 (Ref.) | |||
A | 42 | 14.89 | 90 | 21.13 | 0.61 | 0.39–0.92 | 0.019 | NS |
rs3901896/ARNT2 | ||||||||
T | 137 | 48.58 | 243 | 57.04 | 1.00 (Ref.) | |||
C | 145 | 51.42 | 183 | 42.96 | 1.40 | 1.03–1.90 | 0.029 | NS |
rs8041826/ARNT2 | ||||||||
A | 238 | 84.40 | 378 | 88.73 | 1.00 (Ref.) | |||
G | 44 | 15.60 | 48 | 11.27 | 1.61 | 1.03–2.53 | 0.037 | NS |
SNP/Alleles | COPD-S (n = 141) | GF% | SWOC (n = 213) | GF% | OR | CI (95%) | p |
---|---|---|---|---|---|---|---|
rs11572191/CYP2J2 | |||||||
CC | 105 | 74.47 | 190 | 89.20 | 1.00 (Ref.) | ||
CT | 35 | 24.82 | 21 | 9.86 | 5.51 | 2.36–13.5 | 0.0001 |
TT | 1 | 0.71 | 2 | 0.94 | 2.5 | 0.007–0.08 | 0.86 |
rs17497857/ARNTL2 | |||||||
TT | 106 | 75.18 | 182 | 85.45 | 1.00 (Ref.) | ||
TA | 34 | 24.11 | 28 | 13.15 | 2.41 | 1.14–5.19 | 0.022 |
AA | 1 | 0.71 | 3 | 1.41 | 1.17 | 1.89–39.23 | 0.94 |
rs3901896/ARNT2 | |||||||
TT | 38 | 26.95 | 70 | 32.86 | 1.00 (Ref.) | ||
TC | 61 | 43.26 | 103 | 48.36 | 1.05 | 0.51–2.15 | 0.89 |
CC | 42 | 29.79 | 40 | 18.78 | 2.75 | 1.19–6.56 | 0.019 |
rs8041826/ARNT2 | |||||||
AA | 103 | 73.05 | 168 | 78.87 | 1.00 (Ref.) | ||
AG | 32 | 22.70 | 42 | 19.72 | 2.49 | 1.17–5.39 | 0.019 |
GG | 6 | 4.26 | 3 | 1.41 | 4.0 | 5.98–41.7 | 0.0002 |
rs1951576/CYP46A1 | |||||||
AA | 85 | 60.28 | 133 | 62.44 | 1.00 (Ref.) | ||
AG | 41 | 29.08 | 73 | 34.27 | 0.73 | 0.37–1.40 | 0.35 |
GG | 15 | 10.64 | 7 | 3.29 | 3.88 | 1.02–15.16 | 0.047 |
rs6488842/MGST1 | |||||||
CC | 79 | 56.03 | 122 | 57.28 | 1.00 (Ref.) | ||
CT | 46 | 32.62 | 82 | 38.50 | 1.03 | 0.55–1.95 | 0.92 |
TT | 16 | 11.35 | 9 | 4.23 | 3.85 | 1.16–13.21 | 0.029 |
rs943881/CYP46A1 | |||||||
TT | 79 | 56.03 | 122 | 57.28 | 1.00 (Ref.) | ||
TC | 46 | 32.62 | 82 | 38.50 | 1.03 | 0.55–1.95 | 0.92 |
CC | 16 | 11.35 | 9 | 4.23 | 3.85 | 1.16–13.21 | 0.029 |
Haplotypes | COPD-S (n = 141) Freq% | SWOC (n = 213) Freq% | p | OR | CI (95%) |
---|---|---|---|---|---|
rs10741616-rs7126796 (ARNTL) | |||||
GT | 49.8 | 57.5 | 0.046 | 0.74 | (0.55–0.99) |
rs11048977-rs1037924-rs17497857-rs7138982 (ARNTL2) | |||||
GACC | 12.8 | 8.0 | 0.037 | 1.69 | (1.03–2.77) |
rs10046-rs700519-rs6493489-rs2899472-rs2414095-rs700518 (CYP19A1) | |||||
CACCGA | 3.5 | 7.7 | 0.022 | 0.44 | (0.21–0.9) |
rs1374213-rs3901896-rs7168908-rs2278709 (ARNT2) | |||||
TTGC | 48.6 | 57 | 0.027 | 0.71 | (0.53–0.96) |
TCGC | 14.5 | 8.7 | 0.015 | 1.79 | (1.12–2.87) |
rs3742377-rs943881-rs1951576-rs12435918-rs2146238 (CYP46A1) | |||||
AAAAG | 14.9 | 21.1 | 0.037 | 0.65 | (0.44–0.98) |
rs10847-rs11552229-rs2228099 (ARNT) | |||||
CAC | 30.5 | 40.5 | 0.007 | 0.65 | (0.44–0.89) |
rs8133-rs4147611 (MGST3) | |||||
GT | 42.2 | 51.9 | 0.012 | 0.68 | (0.5–0.92) |
TG | 30.1 | 21.4 | 0.008 | 1.59 | (1.13–2.24) |
SNP/Allele | COPD-BBS (n = 98) | AF% | BBES (n = 293) | AF% | OR | CI (95%) | p | p * |
---|---|---|---|---|---|---|---|---|
rs4147611/MGST3 | ||||||||
T | 125 | 63.78 | 450 | 76.79 | 1.00 (Ref.) | |||
G | 71 | 36.22 | 136 | 23.21 | 1.94 | 1.33–2.85 | 0.0007 | NS |
rs11799886/MGST3 | ||||||||
G | 16 | 8.16 | 12 | 2.05 | 1.00 (Ref.) | |||
A | 180 | 91.84 | 574 | 97.95 | 3.96 | 1.66–9.49 | 0.002 | 0.019 |
rs6681/MGST3 | ||||||||
C | 190 | 96.94 | 582 | 99.32 | 1.00 (Ref.) | |||
T | 6 | 3.06 | 4 | 0.68 | 8.99 | 1.85–43.78 | 0.007 | NS |
rs9333378/MGST3 | ||||||||
A | 149 | 76.02 | 497 | 84.81 | 1.00 (Ref.) | |||
G | 47 | 23.98 | 89 | 15.19 | 1.72 | 1.12–2.64 | 0.013 | NS |
rs957644/MGST3 | ||||||||
C | 176 | 89.80 | 563 | 96.08 | 1.00 (Ref.) | |||
T | 20 | 10.20 | 23 | 3.92 | 2.26 | 1.17– 4.37 | 0.015 | NS |
rs10789501/CYP4A22 | ||||||||
C | 90 | 45.92 | 308 | 52.56 | 1.00 (Ref.) | |||
T | 106 | 54.08 | 278 | 47.44 | 1.58 | 1.07–2.34 | 0.021 | NS |
rs6690005/CYP4Z1 | ||||||||
A | 92 | 46.94 | 306 | 52.22 | 1.00 (Ref.) | |||
G | 104 | 53.06 | 280 | 47.78 | 1.55 | 1.06–2.29 | 0.026 | NS |
rs12059860/CYP4B1 | ||||||||
T | 186 | 94.90 | 577 | 98.46 | 1.00 (Ref.) | |||
C | 10 | 5.10 | 9 | 1.54 | 15.06 | 1.38–164 | 0.026 | NS |
rs1856908/CYP2C9 | ||||||||
T | 139 | 70.92 | 498 | 84.98 | 1.00 (Ref.) | |||
G | 57 | 29.08 | 88 | 15.02 | 2.05 | 1.31–3.19 | 0.002 | 0.003 |
rs1934953/CYP2C8 | ||||||||
G | 135 | 68.88 | 482 | 82.25 | 1.00 (Ref.) | |||
A | 61 | 31.12 | 104 | 17.75 | 2.01 | 1.29–3.12 | 0.002 | 0.021 |
rs3752988/CYP2C8 | ||||||||
T | 160 | 81.63 | 530 | 90.44 | 1.00 (Ref.) | |||
C | 36 | 18.37 | 56 | 9.56 | 2.06 | 1.19–3.57 | 0.01 | NS |
rs9332220/CYP2C9 | ||||||||
G | 173 | 88.27 | 558 | 95.22 | 1.00 (Ref.) | |||
A | 23 | 11.73 | 28 | 4.78 | 2.29 | 1.15–4.56 | 0.019 | NS |
rs1801253/ADRB1 | ||||||||
C | 179 | 91.33 | 568 | 96.93 | 1.00 (Ref.) | |||
G | 17 | 8.67 | 18 | 3.07 | 2.49 | 1.13–5.53 | 0.024 | NS |
rs10509681/CYP2C8 | ||||||||
T | 184 | 93.88 | 575 | 98.12 | 1.00 (Ref.) | |||
C | 12 | 6.12 | 11 | 1.88 | 2.73 | 1.09–6.86 | 0.033 | NS |
rs12794714/CYP2R1 | ||||||||
G | 118 | 60.20 | 298 | 50.85 | 1.00 (Ref.) | |||
A | 78 | 39.80 | 288 | 49.15 | 0.54 | 0.36–0.81 | 0.0026 | NS |
rs1138272/GSTP1 | ||||||||
C | 192 | 97.96 | 583 | 99.49 | 1.00 (Ref.) | |||
T | 4 | 2.04 | 3 | 0.51 | 8.95 | 1.563–51.22 | 0.014 | NS |
rs7129781/CYP2R1 | ||||||||
T | 186 | 94.90 | 576 | 98.29 | 1.00 (Ref.) | |||
C | 10 | 5.10 | 10 | 1.71 | 2.97 | 1.039– 8.49 | 0.042 | NS |
rs1913263/MGST1 | ||||||||
G | 90 | 45.92 | 350 | 59.73 | 1.00 (Ref.) | |||
A | 106 | 54.08 | 236 | 40.27 | 1.86 | 1.26–2.735 | 0.002 | NS |
rs1042669/MGST1 | ||||||||
T | 147 | 75.00 | 380 | 64.85 | 1.00 (Ref.) | |||
G | 49 | 25.00 | 206 | 35.15 | 0.61 | 0.39–0.94 | 0.024 | NS |
rs9332959/MGST1 | ||||||||
G | 147 | 75.00 | 381 | 65.02 | 1.00 (Ref.) | |||
T | 49 | 25.00 | 205 | 34.98 | 0.63 | 0.41–0.96 | 0.031 | NS |
rs4149197/MGST1 | ||||||||
G | 115 | 58.67 | 399 | 68.09 | 1.00 (Ref.) | |||
C | 81 | 41.33 | 187 | 31.91 | 1.52 | 1.01–2.28 | 0.044 | NS |
rs11048977/ARNTL2 | ||||||||
G | 151 | 77.04 | 409 | 69.80 | 1.00 (Ref.) | |||
A | 45 | 22.96 | 177 | 30.20 | 0.64 | 0.48–0.99 | 0.047 | NS |
rs2899472/CYP19A1 | ||||||||
C | 187 | 95.41 | 573 | 97.78 | 1.00 (Ref.) | |||
A | 9 | 4.59 | 13 | 2.22 | 2.9 | 1.09–7.72 | 0.033 | NS |
rs117987520/CYP11A1 | ||||||||
G | 193 | 98.47 | 585 | 99.83 | 1.00 (Ref.) | |||
A | 3 | 1.53 | 1 | 0.17 | 11.67 | 1.08–126.5 | 0.043 | NS |
SNP/Allele | COPD-BBS (n = 98) | GF% | BBES (n = 293) | GF% | OR | CI (95%) | p |
---|---|---|---|---|---|---|---|
rs12059860/CYP4B1 | |||||||
TT | 88 | 89.80 | 284 | 96.93 | 1.00 (Ref.) | ||
TG | 10 | 10.20 | 9 | 3.07 | 15.44 | 1.79–335.6 | 0.025 |
GG | 0 | 0 | 0 | 0.00 | NA | NA | NA |
rs6690005/CYP4Z1 | |||||||
AA | 21 | 21.43 | 81 | 27.65 | 1.00 (Ref.) | ||
AG | 50 | 51.02 | 144 | 49.15 | 1.65 | 0.81–3.45 | 0.17 |
GG | 27 | 27.55 | 68 | 23.21 | 2.86 | 1.26–6.69 | 0.013 |
rs10789501/CYP4A22 | |||||||
CC | 19 | 19.39 | 82 | 27.99 | 1.00 (Ref.) | ||
CT | 52 | 53.06 | 144 | 49.15 | 1.75 | 0.87–3.68 | 0.13 |
TT | 27 | 27.55 | 67 | 22.87 | 2.84 | 1.24–6.73 | 0.015 |
rs9333378/MGST3 | |||||||
AA | 59 | 60.20 | 214 | 73.04 | 1.00 (Ref.) | ||
AG | 31 | 31.63 | 69 | 23.55 | 1.63 | 0.98–2.72 | 0.041 |
GG | 8 | 8.16 | 10 | 3.41 | 2.90 | 1.09–7.68 | 0.027 |
rs9333413/MGST3 | |||||||
AA | 39 | 39.80 | 120 | 40.96 | 1.00 (Ref.) | ||
AG | 36 | 36.73 | 136 | 46.42 | 0.91 | 0.48–1.72 | 0.77 |
GG | 23 | 23.47 | 36 | 12.29 | 2.22 | 1.03–4.79 | 0.042 |
rs957644/MGST3 | |||||||
CC | 80 | 81.63 | 271 | 92.49 | 1.00 (Ref.) | ||
CT | 16 | 16.33 | 21 | 7.17 | 2.29 | 1.02–5.07 | 0.041 |
TT | 2 | 2.04 | 1 | 0.34 | 5.26 | 0.48–116.3 | 0.18 |
rs6681/MGST3 | |||||||
CC | 92 | 93.88 | 289 | 98.63 | 1.00 (Ref.) | ||
CT | 6 | 6.12 | 4 | 1.37 | 9.77 | 2.11–54.79 | 0.005 |
TT | 0 | 0.00 | 0 | 0.00 | NA | NA | NA |
rs11799886/MGST3 | |||||||
GG | 82 | 83.67 | 281 | 95.90 | 1.00 (Ref.) | ||
GA | 16 | 16.33 | 12 | 4.10 | 4.51 | 1.82–11.47 | 0.001 |
AA | 0 | 0.00 | 0 | 0.00 | NA | NA | NA |
rs8133/MGST3 | |||||||
GG | 74 | 75.51 | 243 | 82.94 | 1.00 (Ref.) | ||
GT | 19 | 19.39 | 48 | 16.38 | 1.32 | 0.63–2.67 | 0.45 |
TT | 5 | 5.10 | 2 | 0.68 | 12.44 | 2.31–99.26 | 0.006 |
rs4147611/MGST3 | |||||||
TT | 43 | 43.88 | 179 | 61.09 | 1.00 (Ref.) | ||
TG | 39 | 39.80 | 92 | 31.40 | 2.04 | 1.09–3.80 | 0.025 |
GG | 16 | 16.33 | 22 | 7.51 | 4.57 | 1.88–11.21 | 0.0008 |
rs1856908/CYP2C9 | |||||||
TT | 50 | 51.02 | 213 | 72.70 | 1.00 (Ref.) | ||
TG | 39 | 39.80 | 72 | 24.57 | 2.51 | 1.36–4.67 | 0.003 |
GG | 9 | 9.18 | 8 | 2.73 | 4.59 | 1.43–14.88 | 0.009 |
rs9332220/CYP2C9 | |||||||
GG | 77 | 78.57 | 266 | 90.78 | 1.00 (Ref.) | ||
GA | 19 | 19.39 | 26 | 8.87 | 2.41 | 1.07–5.33 | 0.031 |
AA | 2 | 2.04 | 1 | 0.34 | 2.57 | 0.09–66.83 | 0.51 |
rs1934953/CYP2C8 | |||||||
GG | 47 | 47.96 | 198 | 67.58 | 1.00 (Ref.) | ||
GA | 41 | 41.84 | 86 | 29.35 | 2.53 | 1.38–4.68 | 0.0027 |
AA | 10 | 10.20 | 9 | 3.07 | 4.93 | 1.54–16.18 | 0.0072 |
rs10509681/CYP2C8 | |||||||
TT | 87 | 88.78 | 283 | 96.59 | 1.00 (Ref.) | ||
TC | 10 | 10.20 | 9 | 3.07 | 4.69 | 1.48–14.87 | 0.007 |
CC | 1 | 1.02 | 1 | 0.34 | 3.13 | 0.12–84.55 | 0.44 |
rs3752988/CYP2C8 | |||||||
TT | 64 | 65.31 | 240 | 81.91 | 1.00 (Ref.) | ||
TC | 32 | 32.65 | 50 | 17.06 | 2.98 | 1.54–5.78 | 0.001 |
CC | 2 | 2.04 | 3 | 1.02 | 4.5 | 0.45–45.74 | 0.18 |
rs1801253/ADRB1 | |||||||
CC | 81 | 82.65 | 276 | 94.20 | 1.00 (Ref.) | ||
CG | 17 | 17.35 | 16 | 5.46 | 3.01 | 1.24–7.24 | 0.014 |
GG | 0 | 0.00 | 1 | 0.34 | NA | NA | NA |
rs12794714/CYP2R1 | |||||||
GG | 36 | 36.73 | 76 | 25.94 | 1.00 (Ref.) | ||
GA | 46 | 46.94 | 146 | 49.83 | 0.47 | 0.25–0.89 | 0.022 |
AA | 16 | 16.33 | 71 | 24.23 | 0.35 | 0.14–0.79 | 0.015 |
rs1913263/MGST1 | |||||||
GG | 22 | 22.45 | 100 | 34.13 | 1.00 (Ref.) | ||
GA | 46 | 46.94 | 150 | 51.19 | 1.41 | 0.71–2.91 | 0.33 |
AA | 30 | 30.61 | 43 | 14.68 | 3.42 | 1.57–7.68 | 0.002 |
rs4149197/MGST1 | |||||||
GG | 35 | 35.71 | 129 | 44.03 | 1.00 (Ref.) | ||
GC | 45 | 45.92 | 141 | 48.12 | 0.96 | 0.51–1.79 | 0.89 |
CC | 18 | 18.37 | 23 | 7.85 | 3.73 | 1.56–9.06 | 0.003 |
rs1042669/MGST1 | |||||||
TT | 56 | 57.14 | 123 | 41.98 | 1.00 (Ref.) | ||
TG | 35 | 35.71 | 134 | 45.73 | 0.44 | 0.24–0.79 | 0.007 |
GG | 7 | 7.14 | 36 | 12.29 | 0.5 | 0.17–1.32 | 0.18 |
rs9332959/MGST1 | |||||||
GG | 56 | 57.14 | 124 | 42.32 | 1.00 (Ref.) | ||
GT | 35 | 35.71 | 133 | 45.39 | 0.46 | 0.25–0.83 | 0.01 |
TT | 7 | 7.14 | 36 | 12.29 | 0.52 | 0.17–1.34 | 0.19 |
rs2899472/CYP19A1 | |||||||
CC | 89 | 90.82 | 280 | 95.56 | 1.00 (Ref.) | ||
CA | 9 | 9.18 | 13 | 4.44 | 3.2 | 1.17–8.57 | 0.021 |
AA | 0 | 0.00 | 0 | 0.00 | NA | NA | NA |
rs117987520/CYP11A1 | |||||||
GG | 95 | 96.94 | 292 | 99.66 | 1.00 (Ref.) | ||
GA | 3 | 3.06 | 1 | 0.34 | 12.9 | 1.45–2.8 | 0.036 |
AA | 0 | 0.00 | 0 | 0 | NA | NA | NA |
Haplotypes | COPD-BBS (n = 98) Freq% | BBES (n = 293) Freq% | p | OR | CI (95%) |
---|---|---|---|---|---|
rs10741616-rs7126796 (ARNTL) | |||||
AT | 28.3 | 20.6 | 0.023 | 1.51 | (1.05–2.18) |
rs1993116-rs12794714 (CYP2R1) | |||||
CA | 40.1 | 49.3 | 0.024 | 0.69 | (0.49–0.95) |
CG | 18.3 | 12 | 0.023 | 1.65 | (1.07–2.54) |
rs1913263-rs4149192 (MGST1) | |||||
GG | 45.5 | 59.7 | 5 × 10−4 | 0.56 | (0.41–0.78) |
AG | 43.1 | 32.6 | 0.007 | 1.56 | (1.13–2.17) |
rs7312090-rs11875-rs1042669-rs2160512-rs9332959-rs6488842 (MGST1) | |||||
GGGGTC | 24.8 | 35.1 | 0.007 | 0.61 | (0.42–0.87) |
GGTAGC | 25.5 | 18.4 | 0.032 | 1.53 | (1.05–2.23) |
rs1037924-rs17497857-rs7138982-rs6487604-rs4964059 (ARNTL2) | |||||
ACCCC | 9.9 | 4.6 | 0.006 | 2.28 | (1.25–4.15) |
rs1695-rs4891 (GSTP1) | |||||
AC | 0.4 | 0.1 | 0.007 | 3.98 | (1.37–11.63) |
rs2472304-rs2470890 (CYP1A2) | |||||
GC | 84.7 | 91.1 | 0.009 | 0.54 | (0.33–0.87) |
AT | 15.3 | 8.9 | 0.009 | 1.86 | (1.16–2.99) |
rs1374213-rs3901896-rs7168908-rs2278709 (ARNT2) | |||||
TTGC | 68.3 | 76.5 | 0.022 | 0.66 | (0.47–0.94) |
CCAC | 6.9 | 1.4 | 3.5 × 10−5 | 5.38 | (2.22–13.02) |
rs11856676-rs4238522 (ARNT2) | |||||
TT | 10.4 | 5.8 | 0.027 | 1.88 | (1.07–3.33) |
rs2901783-rs76498052-rs1126545-rs2860840-rs1042192-rs1042194-rs7916649-rs4388808-rs4244285-rs12767583-rs4494250-rs1853205-rs10786172-rs28399505-rs1856908 (CYP2C18, CYP2C9) | |||||
ACCTGGGAGCAGGTT | 38.7 | 49.2 | 0.01 | 0.65 | (0.46–0.9) |
ACCTGGGAGCAGGTG | 5.8 | 0.9 | 3.9 × 10−5 | 7.34 | (2.55–21.09) |
ACCCGGGAGCGGATG | 3 | 0.5 | 0.005 | 5.94 | (1.47–24.01) |
rs1058932-rs11572177-rs1934953-rs1934951-rs11572101-rs11572093-rs3752988-rs1934956 (CYP2C8) | |||||
CAAGTGCC | 8.9 | 3.2 | 0.001 | 2.92 | (1.5–5.68) |
rs11807-rs1055259-rs3814309 (GSTM5/GSTM3) | |||||
ATT | 38.9 | 28.7 | 0.007 | 1.59 | (1.14–2.23) |
rs1537236-rs7483 (GSTM3) | |||||
TT | 46.9 | 55.1 | 0.044 | 0.72 | (0.52–0.99) |
CC | 38.6 | 28.2 | 0.006 | 1.61 | (1.15–2.25) |
rs4147592-rs4147594-rs4147595 (MGST3) | |||||
GCC | 10.9 | 5.3 | 0.006 | 2.18 | (1.23–3.86) |
rs9333413-rs957644 (MGST3) | |||||
GT | 9.9 | 3.9 | 0.001 | 2.69 | (1.44–5.01) |
rs8133-rs4147611 (MGST3) | |||||
GT | 63.9 | 76.8 | 3 × 10−4 | 0.53 | (0.38–0.75) |
GG | 21.8 | 14.3 | 0.013 | 1.66 | (1.11–2.49) |
TG | 14.4 | 8.9 | 0.027 | 1.72 | (1.06–2.79) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ambrocio-Ortiz, E.; Pérez-Rubio, G.; Ramírez-Venegas, A.; Hernández-Zenteno, R.d.J.; Fernández-López, J.C.; Ramírez-Díaz, M.E.; Cruz-Vicente, F.; Martínez-Gómez, M.d.L.; Sansores, R.; Pérez-Ramos, J.; et al. SNPs Sets in Codifying Genes for Xenobiotics-Processing Enzymes Are Associated with COPD Secondary to Biomass-Burning Smoke. Curr. Issues Mol. Biol. 2023, 45, 799-819. https://doi.org/10.3390/cimb45020053
Ambrocio-Ortiz E, Pérez-Rubio G, Ramírez-Venegas A, Hernández-Zenteno RdJ, Fernández-López JC, Ramírez-Díaz ME, Cruz-Vicente F, Martínez-Gómez MdL, Sansores R, Pérez-Ramos J, et al. SNPs Sets in Codifying Genes for Xenobiotics-Processing Enzymes Are Associated with COPD Secondary to Biomass-Burning Smoke. Current Issues in Molecular Biology. 2023; 45(2):799-819. https://doi.org/10.3390/cimb45020053
Chicago/Turabian StyleAmbrocio-Ortiz, Enrique, Gloria Pérez-Rubio, Alejandra Ramírez-Venegas, Rafael de Jesús Hernández-Zenteno, Juan Carlos Fernández-López, María Elena Ramírez-Díaz, Filiberto Cruz-Vicente, María de Lourdes Martínez-Gómez, Raúl Sansores, Julia Pérez-Ramos, and et al. 2023. "SNPs Sets in Codifying Genes for Xenobiotics-Processing Enzymes Are Associated with COPD Secondary to Biomass-Burning Smoke" Current Issues in Molecular Biology 45, no. 2: 799-819. https://doi.org/10.3390/cimb45020053
APA StyleAmbrocio-Ortiz, E., Pérez-Rubio, G., Ramírez-Venegas, A., Hernández-Zenteno, R. d. J., Fernández-López, J. C., Ramírez-Díaz, M. E., Cruz-Vicente, F., Martínez-Gómez, M. d. L., Sansores, R., Pérez-Ramos, J., & Falfán-Valencia, R. (2023). SNPs Sets in Codifying Genes for Xenobiotics-Processing Enzymes Are Associated with COPD Secondary to Biomass-Burning Smoke. Current Issues in Molecular Biology, 45(2), 799-819. https://doi.org/10.3390/cimb45020053