Placovinane: 1″β-Ethoxy-6,4′-dimethoxy-3″,3″-dimethyl-1″,2″-dihydropyranoisoflavone, a New Isoflavone Derivative
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Elucidation of 1
2.2. α-Glucosidase Inhibitory Activity
2.3. Cytotoxicity against Human Cancer Cell Lines
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Material
3.3. Extraction and Isolation
3.4. α-Glucosidase Inhibitory Assay
3.5. Cytotoxic Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.-H.; Jaremko, M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Pandey, A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miadoková, E. Isoflavonoids–an Overview of Their Biological Activities and Potential Health Benefits. Interdiscip. Toxicol. 2009, 2, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Do, T.M.L.; Huynh, T.N.T.; Tran, H.N.Q.; Tuong, L.T.; Nguyen, T.T.H.; Nguyen, T.N.T.; Nguyen, T.M.D. Isoflavones from Placolobium Vietnamense, an Indigenous Plant of Vietnam. Vietnam J. Chem. 2021, 59, 7–11. [Google Scholar] [CrossRef]
- Sichaem, J.; Ruksilp, T.; Sawasdee, P.; Khumkratok, S.; Tip-pyang, S. Chemical Constituents of the Stems of Spatholobus Parviflorus and Their Cholinesterase Inhibitory Activity. Chem. Nat. Compd. 2018, 54, 356–357. [Google Scholar] [CrossRef]
- Puebla, P.; Oshima-Franco, Y.; Franco, L.M.; Santos, M.G.D.; da Silva, R.V.; Rubem-Mauro, L.; Feliciano, A.S. Chemical Constituents of the Bark of Dipteryx alata Vogel, an Active Species against Bothrops jararacussu Venom. Molecules 2010, 15, 8193–8204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, X.; Wei, Y.; Ito, Y. Preparative Isolation of Isorhamnetin from Stigma Maydis Using High Speed Countercurrent Chromatography. J. Liq. Chromatogr. Relat. 2008, 32, 273–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghareib, H.R.A.; Abdelhamed, M.S.; Ibrahim, O.H. Antioxidative Effects of the Acetone Fraction and Vanillic Acid from Chenopodium murale on Tomato Plants. Weed Biol. Manag. 2010, 10, 64–72. [Google Scholar] [CrossRef]
- Wandji, J.; Fomum, Z.T.; Tillequin, F.; Seguin, E.; Koch, M. Two Isoflavones from Erythrina senegalensis. Phytochemistry 1993, 35, 245–248. [Google Scholar] [CrossRef]
- Pauli, G.F.; Chen, S.-N.; Lankin, D.C.; Bisson, J.; Case, R.J.; Chadwick, L.R.; Gödecke, T.; Inui, T.; Krunic, A.; Jaki, B.U. Essential Parameters for Structural Analysis and Dereplication by 1H NMR Spectroscopy. J. Nat. Prod. 2014, 77, 1473–1487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.; Zheng, R.-R.; Liu, Z.-W.; Wang, W.-J.; Li, G.-Q.; Fan, C.-L.; Zhang, X.-Q.; Ye, W.-C.; Che, C.-T. Enantiomeric Chromones from Harrisonia perforata. Phytochem. Lett. 2014, 10, 295–299. [Google Scholar] [CrossRef]
- Sichaem, J.; Aree, T.; Lugsanangarm, K.; Tip-pyang, S. Identification of Highly Potent α-Glucosidase Inhibitory and Antioxidant Constituents from Zizyphus rugosa Bark: Enzyme Kinetic and Molecular Docking Studies with Active Metabolites. Pharm. Biol. 2017, 55, 1436–1441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, T.T.; Nguyen, H.L.; Pham, T.N.; Nguyen, P.K.; Huynh, T.T.; Sichaem, J.; Do, L.T. Bougainvinones N-P, Three New Flavonoids from Bougainvillea spectabilis. Fitoterapia 2021, 149, 104832. [Google Scholar] [CrossRef] [PubMed]
Position | δH (J in Hz) | δC | Position | δH (J in Hz) | δC |
---|---|---|---|---|---|
2 | 8.45, s | 152.8 | 5′ | 6.99, dd (7.0, 2.0) | 113.6 |
3 | 122.9 | 6′ | 7.55, dd (7.0, 2.0) | 130.0 | |
4 | 174.2 | 1″ | 4.80, dd (4.5, 2.5) | 65.4 | |
4a | 116.1 | 2″ | 2.35, dd (15.0, 2.5) | 30.6 | |
5 | 7.41, s | 103.5 | 1.90, dd (15.0, 4.5) | ||
6 | 147.1 | 3″ | 75.9 | ||
7 | 148.3 | 4″ | 1.46, s | 26.3 | |
8 | 110.8 | 5″ | 1.43, s | 26.3 | |
8a | 150.2 | 1‴ | 3.77, dd (9.0, 2.0) | 63.6 | |
1′ | 124.4 | 3.68, dd (9.0, 2.0) | |||
2′ | 7.55, dd (7.0, 2.0) | 130.0 | 2‴ | 1.18, dd (3.0, 2.0) | 15.4 |
3′ | 6.99, dd (7.0, 2.0) | 113.6 | 6-OCH3 | 3.85, s | 55.6 |
4′ | 158.9 | 4′-OCH3 | 3.79, s | 55.1 |
Compound | IC50 (µM) a |
---|---|
1 | 18.7 ± 2.50 |
2 | 11.0 ± 1.50 |
3 | 18.9 ± 2.90 |
4 | 87.3 ± 3.13 |
5 | 24.5 ± 2.20 |
Acarbose b | 179 ± 6.02 |
Compound | IC50 ± SD (µM) a | ||
---|---|---|---|
KB | Hep G2 | MCF7 | |
1 | 89.6 ± 4.78 | 93.8 ± 5.5 | >100 |
Ellipticine b | 0.31 ± 0.05 | 0.33 ± 0.05 | 0.40 ± 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huynh, T.T.N.; Do, L.T.M.; Sichaem, J. Placovinane: 1″β-Ethoxy-6,4′-dimethoxy-3″,3″-dimethyl-1″,2″-dihydropyranoisoflavone, a New Isoflavone Derivative. Molbank 2022, 2022, M1422. https://doi.org/10.3390/M1422
Huynh TTN, Do LTM, Sichaem J. Placovinane: 1″β-Ethoxy-6,4′-dimethoxy-3″,3″-dimethyl-1″,2″-dihydropyranoisoflavone, a New Isoflavone Derivative. Molbank. 2022; 2022(3):M1422. https://doi.org/10.3390/M1422
Chicago/Turabian StyleHuynh, Tuyet T. N., Lien T. M. Do, and Jirapast Sichaem. 2022. "Placovinane: 1″β-Ethoxy-6,4′-dimethoxy-3″,3″-dimethyl-1″,2″-dihydropyranoisoflavone, a New Isoflavone Derivative" Molbank 2022, no. 3: M1422. https://doi.org/10.3390/M1422
APA StyleHuynh, T. T. N., Do, L. T. M., & Sichaem, J. (2022). Placovinane: 1″β-Ethoxy-6,4′-dimethoxy-3″,3″-dimethyl-1″,2″-dihydropyranoisoflavone, a New Isoflavone Derivative. Molbank, 2022(3), M1422. https://doi.org/10.3390/M1422