Synthesis and Antimicrobial Evaluation of 2-(6-Imidazo[1,2-a]pyridin-2-yl-5-methyl-2,4-dioxo-3-phenyl-3,4-dihydrothieno[2,3-d]pyrimidin-1(2H)-yl)-N-arylacetamide Derivatives
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials and Instrumentation
3.2. Chemical Part
3.3. Microbiological Studies
3.4. Molecular Docking Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elzein, E.; Kalla, R.; Zablocki, J.; Li, X.; Perry, T.; Kobayashi, T.; Parkhill, E. A2A Adenosine Receptor Anatagonists. U.S. Patent 2007208040, 6 September 2007. [Google Scholar]
- Harriman, G.C.; Masse, C.E.; Harwood, J.; Bhat, S.; Greenwood, J.R. ACC Inhibitors and Uses Thereof. U.S. Patent 2013123231, 16 May 2013. [Google Scholar]
- Vlasov, S.V.; Osolodchenko, T.P.; Kovalenko, S.; Chernykh, V.P. Synthesis and the antimicrobial activity of 5-methyl-6-(2-methyl-1,3-thiazol-4-yl)-3-phenylthieno[2,3-d]pyrimidine-2,4(1H,3H)-diones. News Pharm. 2014, 4, 3–7. [Google Scholar] [CrossRef] [Green Version]
- Triloknadh, S.; Rao, C.V.; Nagaraju, K.; Hari Krishna, N.; Ramaiah, C.V.; Rajendra, W.; Trinath, D.; Suneetha, Y. Design, synthesis, neuroprotective, antibacterial activities and docking studies of novel thieno[2,3-d]pyrimidine-alkyne Mannich base and oxadiazole hybrids. Bioorg. Med. Chem. Lett. 2018, 28, 1663–1669. [Google Scholar] [CrossRef] [PubMed]
- Settypalli, T.; Chunduri, V.R.; Kerru, N.; Nallapaneni, H.K.; Chintha, V.R.; Daggupati, T.; Yeguvapalli, S.; Wudayagiri, R. Design, synthesis, neuroprotective and antibacterial activities of 1,2,4-triazolo[3,4-b]1,3,4-thiadiazole linked thieno[2,3-d]pyrimidine derivatives and in silico docking studies. Chem. Sel. 2019, 4, 1627–1634. [Google Scholar] [CrossRef]
- Kerru, N.; Settypalli, T.; Nallapaneni, H.; Chunduri, V.R. Novel Thienopyrimidine derivatives containing 1,2,4-triazoles and 1,3,4-oxadiazoles as potent antimicrobial activity. Med. Chem. 2014, 4, 623–629. [Google Scholar] [CrossRef]
- Vlasov, S.V.; Kovalenko, S.N.; Osolodchenko, T.P.; Lenitskaya, E.B.; Chernykh, V.P. Synthesis and biological activity of 6-(1,3-benzoxazol-2-yl)-5-methylthieno-[2,3-d]pyrimidines. Pharm. Chem. J. 2018, 52, 510–514. [Google Scholar] [CrossRef]
- Vlasov, S.V.; Vlasova, O.D.; Severina, H.I.; Krolenko, K.Y.; Borysov, O.V.; Abu Sharkh, A.I.M.; Vlasov, V.S.; Georgiyants, V.A. Design, Synthesis and In Vitro Antimicrobial Activity of 6-(1H-Benzimidazol-2-yl)-3,5-dimethyl-4-oxo-2-thio-3,4-dihydrothieno[2,3-d]pyrimidines. Sci. Pharm. 2021, 89, 49. [Google Scholar] [CrossRef]
- Akao, Y.; Canan, S.; Cao, Y.; Condroski, K.; Engkvist, O.; Itono, S.; Kaki, R.; Kimura, C.; Kogej, T.; Nagaoka, K.; et al. Collaborative virtual screening to elaborate an imidazo[1,2-a]pyridine hit series for visceral leishmaniasis. RSC Med. Chem. 2021, 12, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Adlington, N.K.; Agnew, L.R.; Campbell, A.D.; Cox, R.J.; Dobson, A.; Barrat, C.F.; Gall, M.A.Y.; Hicks, W.; Howell, G.P.; Jawor-Baczynska, A.; et al. Process Design and Optimization in the Pharmaceutical Industry: A Suzuki–Miyaura Procedure for the Synthesis of Savolitinib. J. Org. Chem. 2018, 84, 4735–4747. [Google Scholar] [CrossRef] [PubMed]
- Markham, A. Savolitinib: First Approval. Drugs 2021, 81, 1665–1670. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, S.; Wang, Y. Preparation Method of Key Intermediate of Olprinone Hydrochloride. Patent China 111499631, 7 August 2020. [Google Scholar]
- Chitti, S.; Singireddi, S.; Santosh Kumar Reddy, P.; Trivedi, P.; Bobde, Y.; Kumar, C.; Rangan, K.; Ghosh, B.; Sekhar, K.V.G.C. Design, synthesis and biological evaluation of 2-(3,4-dimethoxyphenyl)-6 (1,2,3,6-tetrahydropyridin-4-yl)imidazo[1,2-a]pyridine analogues as antiproliferative agents. Bioorg. Med. Chem. Lett. 2019, 29, 2551–2558. [Google Scholar] [CrossRef]
- Saeedi, M.; Raeisi-Nafchi, M.; Sobhani, S.; Mirfazli, S.S.; Zardkanlou, M.; Mojtabavi, S.; Faramarzi, M.A.; Akbarzadeh, T. Synthesis of 4-alkylaminoimidazo[1,2-a]pyridines linked to carbamate moiety as potent α-glucosidase inhibitors. Mol. Divers. 2021, 25, 2399–2409. [Google Scholar] [CrossRef] [PubMed]
- Poormirzaei, N.; Pordel, M.; Yaghoobi, E.; Shojaee, S.; Aminiyanfar, M.; Gonabadi, A. 3-(Hydroxyimino)imidazo[1,2-a]pyridin-2(3H)-ylidene-1-arylethanones as new red heterocyclic dyes: Synthesis, spectral studies, quantum-chemical investigations, and antibacterial activities. J. Chem. Res. 2020, 44, 167–173. [Google Scholar] [CrossRef]
- Rajitha, G.; Ravibabu, V.; Ramesh, G.; Rajitha, B. Synthesis and antimicrobial activity of novel imidazo[1,2-a]pyridinopyrimidine-2,4,6(1H,3H,5H)-triones and thioxopyrimidine-4,6(1H,5H)diones. Res. Chem. Intermed. 2016, 42, 1989–1998. [Google Scholar] [CrossRef]
- Chenna Reddy, M.L.; Patil, V.B.; Nawaz Khan, F.R.; Saravanan, V. Synthesis of Imidazo[1,2-a]pyridines and Imidazo[2,1-b]thiazoles Attached to a Cycloalkyl or Saturated Heterocycle Containing a Tertiary Hydroxy Substitution. J. Heterocycl. Chem. 2019, 56, 1486–1497. [Google Scholar] [CrossRef]
- Kusy, D.; Maniukiewicz, W.; Błażewska, K.M. Microwave-assisted synthesis of 3-formyl substituted imidazo[1,2-a]pyridines. Tetrahedron Lett. 2019, 60, 151244. [Google Scholar] [CrossRef]
- Zhong, W.; Pasunooti, K.K.; Balamkundu, S.; Wong, Y.H.; Nah, Q.; Gadi, V.; Gnanakalai, S.; Chionh, Y.H.; McBee, M.E.; Gopal, P.; et al. Thienopyrimidinone derivatives that inhibit bacterial tRNA (guanine37-N1)-methyltransferase (TrmD) by restructuring the active site with a tyrosine-flipping mechanism. J. Med. Chem. 2019, 62, 7788–7805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nekrasova, L.S.; Svita, V.M.; Glushkevich, T.G.; Tomchuk, V.V.; Zherebko, N.M.; Yanovs’ka, V.V. Methodological Guidelines Determination of the Sensitivity of Microorganisms to Antibiotics; No MB 9.9.5-143-2007; Ministry of Public Health of Ukraine: Kiev, Ukraine, 2007; p. 24. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 27th ed.; CLSI supplement M100-S26; CLSI: Wayne, PA, USA, 2017; p. 280. [Google Scholar]
- Ministry of Public Health of Ukraine. Bacteriological Control of Culture Media; Newsletter No 05.4.1/1670; Ministry of Public Health of Ukraine: Kiev, Ukraine, 2001; p. 45. [Google Scholar]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Protein Data Bank. Available online: http://www.rcsb.org/pdb/home/home.do (accessed on 4 April 2020).
Compound | Diameters (mm) of Growth Inhibition Zone, Number of Test Repetitions n = 3 MIC mg/mL | |||||
---|---|---|---|---|---|---|
Staphylococcus aureus ATCC 25923 | Escherichia coli ATCC 25922 | Proteus vulgaris ATCC 4636 | Pseudomonas aeruginosa ATCC 27853 | Bacillus subtilis АТСС 6633 | Candida albicans ATCC 653/885 | |
3 | 15, 14, 15 0.4 | 14, 13, 14 0.8 | growth 0.8 | growth 0.8 | 15, 14, 15 0.8 | growth >10 |
4.1 | 18, 17, 18 0.8 | 16, 15, 16 3.2 | 15, 15, 15 3.2 | 15, 14, 14 3.2 | 17, 18, 17 0.8 | growth >10 |
4.2 | 16, 15, 16 0.8 | 14, 15, 14 3.2 | growth 3.2 | growth 3.2 | 17, 17, 16 0.8 | growth >10 |
Metronidazole | 14, 15, 14 0.8 | 14, 13, 14 0.8 | growth 6.4 | growth 6.4 | 16, 15, 16 0.8 | 14, 14, 14 >10 |
Streptomycin | 15, 16, 15 0.1 | 15, 16, 17 0.8 | growth 0.8 | growth 1.6 | 17, 16, 17 0.2 | growth 3.2 |
Ligand | Binding Energy Kcal/Mol | Hydrophobic Interaction | Hydrogen Interaction | Other Interaction |
---|---|---|---|---|
Reference Inhibitor | −8.2 | TYR141, SER93 (2) #, PRO94 (4), PRO149 (2), ILE138, LEU143, GLY 145, GLY146 | LEU143, GLN95, GLU121, Gly139, ASP182 | - |
3 | −8.7 | VAL142 (3) *, GLU121, GLY122 *, PRO94 (3) | ARG159 *, THR177 *, TYR91 * | ASP182 (Pi-Anion) |
4.1 | −10.6 | VAL142 (3) *, GLU121,GLY122 *, PRO94 (3) | ARG159 *, THR177(3) *, TYR91 *, GLU121 | ASP182 (Pi-Anion) |
4.2 | −10.8 | VAL142 (3) *, GLU121, GLY122*, PRO94 (5) | ARG159 *, THR177(3) *, LEU180 *, TYR91 * | ASP159 * (Pi-Anion) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlasov, S.V.; Severina, H.I.; Borysov, O.V.; Krolenko, K.Y.; Shynkarenko, P.E.; Saidov, N.B.; Vlasov, V.S.; Georgiyants, V.A. Synthesis and Antimicrobial Evaluation of 2-(6-Imidazo[1,2-a]pyridin-2-yl-5-methyl-2,4-dioxo-3-phenyl-3,4-dihydrothieno[2,3-d]pyrimidin-1(2H)-yl)-N-arylacetamide Derivatives. Molbank 2022, 2022, M1331. https://doi.org/10.3390/M1331
Vlasov SV, Severina HI, Borysov OV, Krolenko KY, Shynkarenko PE, Saidov NB, Vlasov VS, Georgiyants VA. Synthesis and Antimicrobial Evaluation of 2-(6-Imidazo[1,2-a]pyridin-2-yl-5-methyl-2,4-dioxo-3-phenyl-3,4-dihydrothieno[2,3-d]pyrimidin-1(2H)-yl)-N-arylacetamide Derivatives. Molbank. 2022; 2022(1):M1331. https://doi.org/10.3390/M1331
Chicago/Turabian StyleVlasov, Sergiy V., Hanna I. Severina, Oleksandr V. Borysov, Konstantin Yu. Krolenko, Pavlo E. Shynkarenko, Narzullo B. Saidov, Vitaliy S. Vlasov, and Victoriya A. Georgiyants. 2022. "Synthesis and Antimicrobial Evaluation of 2-(6-Imidazo[1,2-a]pyridin-2-yl-5-methyl-2,4-dioxo-3-phenyl-3,4-dihydrothieno[2,3-d]pyrimidin-1(2H)-yl)-N-arylacetamide Derivatives" Molbank 2022, no. 1: M1331. https://doi.org/10.3390/M1331
APA StyleVlasov, S. V., Severina, H. I., Borysov, O. V., Krolenko, K. Y., Shynkarenko, P. E., Saidov, N. B., Vlasov, V. S., & Georgiyants, V. A. (2022). Synthesis and Antimicrobial Evaluation of 2-(6-Imidazo[1,2-a]pyridin-2-yl-5-methyl-2,4-dioxo-3-phenyl-3,4-dihydrothieno[2,3-d]pyrimidin-1(2H)-yl)-N-arylacetamide Derivatives. Molbank, 2022(1), M1331. https://doi.org/10.3390/M1331