Dynamic Mining of Consumer Demand via Online Hotel Reviews: A Hybrid Method
Abstract
:1. Introduction
2. Literature Review
2.1. Online Hotel Reviews
2.2. Consumer Demand and Opinion Mining
2.2.1. Consumer Demand
2.2.2. Opinion Mining
2.3. Kano Model
3. Methodology
3.1. Data Collection
3.2. Data Analysis
3.2.1. Online Hotel Review Analysis
3.2.2. Consumer Demand Classification
4. Results
4.1. Attribute Extraction
4.2. Binary Semantic and Visualisation Analysis
4.2.1. Constructing Bigram Co-Occurrence
4.2.2. Semantic Association Network Visualisation
4.2.3. Demand Classification
4.3. Comment Segmentation and Sentiment Analysis
4.4. Dynamic Analysis of Consumer Demand
5. Discussion of Findings
6. Research Implications
6.1. Theoretical Implications
6.2. Practical Implications
6.3. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, C.; Xu, Z.; Gou, X.; Chen, S. An online reviews-driven method for the prioritization of improvements in hotel services. Tour. Manag. 2021, 87, 104382. [Google Scholar] [CrossRef]
- Yu, W.; Cui, F.; Hou, Z. The evolution of consumers’ demand for hotels under the public health crisis: Opinion mining from online reviews. Curr. Issues Tour. 2023, 26, 1974–1990. [Google Scholar] [CrossRef]
- Hu, F.; Teichert, T.; Liu, Y.; Li, H.X.; Gundyreva, E. Evolving customer expectations of hospitality services: Differences in attribute effects on satisfaction and Re-Patronage. Tour. Manag. 2019, 74, 345–357. [Google Scholar] [CrossRef]
- Phillips, P.; Barnes, S.; Zigan, K.; Schegg, R. Understanding the Impact of Online Reviews on Hotel Performance: An Empirical Analysis. J. Travel Res. 2017, 56, 235–249. [Google Scholar] [CrossRef]
- Xu, X. How do consumers in the sharing economy value sharing? Evidence from online reviews. Decis. Support Syst. 2020, 128, 113162. [Google Scholar] [CrossRef]
- Manolitzas, P.; Glaveli, N.; Palamas, S.; Talias, M.; Grigoroudis, E. Hotel guests’ demanding level and importance of attribute satisfaction ratings: An application of MUltiplecriteria Satisfaction Analysis on TripAdvisor’s hotel guests ratings. Curr. Issues Tour. 2021, 25, 1203–1208. [Google Scholar] [CrossRef]
- Bian, Y.; Ye, R.; Zhang, J.; Yan, X. Customer preference identification from hotel online reviews: A neural network based fine-grained sentiment analysis. Comput. Ind. Eng. 2022, 172, 108648. [Google Scholar] [CrossRef]
- Chen, L.-F. A novel framework for customer-driven service strategies: A case study of a restaurant chain. Tour. Manag. 2014, 41, 119–128. [Google Scholar] [CrossRef]
- Yen, C.-H.; Tsaur, S.-H.; Tsai, C.-H. Service redundancy: Scale development and validation. Int. J. Hosp. Manag. 2023, 110, 103430. [Google Scholar] [CrossRef]
- Chiang, C.-F.; Chen, W.-Y.; Hsu, C.-Y. Classifying technological innovation attributes for hotels: An application of the Kano model. J. Travel Tour. Mark. 2019, 36, 796–807. [Google Scholar] [CrossRef]
- Kano, N. Attractive Quality and Must-Be Quality. J. Jpn. Soc. Qual. Control 1984, 14, 39–48. [Google Scholar]
- Bigorra, A.M.; Isaksson, O.; Karlberg, M. Aspect-based Kano categorization. Int. J. Inf. Manag. 2019, 46, 163–172. [Google Scholar] [CrossRef]
- Herzberg, F.; Mausner, B.; Synderman, B.B. The Motivation to Work; John Wiley: New York, NY, USA, 1959. [Google Scholar]
- Park, H.; Lee, M.; Back, K.-J. Exploring the roles of hotel wellness attributes in customer satisfaction and dissatisfaction: Application of Kano model through mixed methods. Int. J. Contemp. Hosp. Manag. 2021, 33, 263–285. [Google Scholar] [CrossRef]
- Sven-Olaf Gerdt, E.W.; Schewe, G. The relationship between sustainability and customer satisfaction in hospitality: An explorative investigation using eWOM as a data source. Tour. Manag. 2019, 74, 155–172. [Google Scholar] [CrossRef]
- Kirilenko, A.P.; Stepchenkova, S.O.; Dai, X. Automated topic modeling of tourist reviews: Does the Anna Karenina principle apply? Tour. Manag. 2021, 83, 104241. [Google Scholar] [CrossRef]
- Dinçer, M.Z.; Alrawadieh, Z. Negative Word of Mouse in the Hotel Industry: A Content Analysis of Online Reviews on Luxury Hotels in Jordan. J. Hosp. Mark. Manag. 2017, 26, 785–804. [Google Scholar] [CrossRef]
- Fong, L.H.N.; Lei, S.S.I.; Law, R. Asymmetry of Hotel Ratings on TripAdvisor: Evidence from Single- versus Dual-Valence Reviews. J. Hosp. Mark. Manag. 2017, 26, 67–82. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Huang, S.-Y. A new fuzzy concept approach for Kano’s model. Expert Syst. Appl. 2009, 36, 4479–4484. [Google Scholar] [CrossRef]
- Jin, J.; Jia, D.; Chen, K. Mining online reviews with a Kansei-integrated Kano model for innovative product design. Int. J. Prod. Res. 2022, 60, 6708–6727. [Google Scholar] [CrossRef]
- Chen, Z.; Yin, A.; Wang, Y. Demand analysis of general practice patients for teaching clinic based on Kano model. Front. Public Health 2024, 12, 1336683. [Google Scholar] [CrossRef]
- Chen, C.-H. Leveraging the Power of Online Referral for E-Business: The Moderated Mediation Model. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 2594–2607. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, J.; Wu, G.; Ma, Y.; Guo, Q. Applying kansei engineering and text mining to design fresh food logistics services. Int. J. Logist. Res. Appl. 2024, 1–25. [Google Scholar] [CrossRef]
- Hu, F.; Teichert, T.; Deng, S.; Liu, Y.; Zhou, G. Dealing with pandemics: An investigation of the effects of COVID-19 on customers’ evaluations of hospitality services. Tour. Manag. 2021, 85, 104320. [Google Scholar] [CrossRef] [PubMed]
- Raedts, M.; Roozen, I.; Dothee, C. The influence of the COVID-19 pandemic on guests’ evaluations of hotel services. Curr. Issues Tour. 2023, 26, 3751–3756. [Google Scholar] [CrossRef]
- Lee, S.; Park, S.; Kwak, M. Revealing the dual importance and Kano type of attributes through customer review analytics. Adv. Eng. Inform. 2022, 51, 101533. [Google Scholar] [CrossRef]
- Jeong, M.; Shin, H.H.; Lee, M.; Lee, J. Assessing brand performance consistency from consumer-generated media: The US hotel industry. Int. J. Contemp. Hosp. Manag. 2022, 35, 2056–2083. [Google Scholar] [CrossRef]
- Zhang, C.; Tian, Y.-X.; Fan, Z.-P. Forecasting sales using online review and search engine data: A method based on PCA–DSFOA–BPNN. Int. J. Forecast. 2022, 38, 1005–1024. [Google Scholar] [CrossRef]
- Litvin, S.W.; Goldsmith, R.E.; Pan, B. Electronic word-of-mouth in hospitality and tourism management. Tour. Manag. 2008, 29, 458–468. [Google Scholar] [CrossRef]
- Lee, H.-C.; Rim, H.-C.; Lee, D.-G. Learning to rank products based on online product reviews using a hierarchical deep neural network. Electron. Commer. Res. Appl. 2019, 36, 100874. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, C.; Hu, Y.; Xu, Z.; Liu, H. Modelling consumer satisfaction based on online reviews using the improved Kano model from the perspective of risk attitude and aspiration. Technol. Econ. Dev. Econ. 2021, 27, 550–582. [Google Scholar] [CrossRef]
- Ciuchita, R.; Medberg, G.; Penttinen, V.; Lutz, C.; Heinonen, K. Affordances advancing user-created communication (UCC) in service: Interactivity, visibility and anonymity. J. Serv. Manag. 2022, 33, 688–704. [Google Scholar] [CrossRef]
- Wang, H.-J. Market Segmentation of Online Reviews: A Network Analysis Approach. Int. J. Mark. Res. 2022, 54, 652–671. [Google Scholar] [CrossRef]
- Llorens-Marin, M.; Hernandez, A.; Puelles-Gallo, M. Altruism in eWOM: Propensity to Write Reviews on Hotel Experience. J. Theor. Appl. Electron. Commer. Res. 2023, 18, 2238–2256. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, Y.; Li, H.; Lin, Z. Sentimental interplay between structured and unstructured user-generated contents: An empirical study on online hotel reviews. Online Inf. Rev. 2016, 40, 119–145. [Google Scholar] [CrossRef]
- Zarezadeh, Z.Z.; Rastegar, R.; Xiang, Z. Big data analytics and hotel guest experience: A critical analysis of the literature. Int. J. Contemp. Hosp. Manag. 2022, 34, 2320–2336. [Google Scholar] [CrossRef]
- Akbarabadi, M.; Hosseini, M. Predicting the helpfulness of online customer reviews: The role of title features. Int. J. Mark. Res. 2020, 62, 272–287. [Google Scholar] [CrossRef]
- Xu, J.; Wang, X.; Zhang, J.; Huang, S.S.; Lu, X. Explaining customer satisfaction via hotel reviews: A comparison between pre- and post-COVID-19 reviews. J. Hosp. Tour. Manag. 2022, 53, 208–213. [Google Scholar] [CrossRef]
- Quan, L.; Kim, J.J.; Han, H. Customer views on comprehensive green hotel selection attributes and analysis of importance-performance. J. Travel Tour. Mark. 2022, 39, 535–554. [Google Scholar] [CrossRef]
- Glaveli, N.; Manolitzas, P.; Palamas, S.; Grigoroudis, E.; Zopounidis, C. Developing effective strategic decision-making in the areas of hotel quality management and customer satisfaction from online ratings. Curr. Issues Tour. 2022, 26, 1003–1021. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Liang, S.; Yang, Y.; Law, R. Infusing new insights: How do review novelty and inconsistency shape the usefulness of online travel reviews? Tour. Manag. 2023, 96, 104703. [Google Scholar] [CrossRef]
- Viglia, G.; Minazzi, R.; Buhalis, D. The influence of e-word-of-mouth on hotel occupancy rate. Int. J. Contemp. Hosp. Manag. 2016, 28, 2035–2051. [Google Scholar] [CrossRef]
- Nicolau, J.L.; Xiang, Z.; Wang, D. Daily online review sentiment and hotel performance. Int. J. Contemp. Hosp. Manag. 2024, 36, 790–811. [Google Scholar] [CrossRef]
- Guillet, B.D.; Chu, A.M.C. Managing hotel revenue amid the COVID-19 crisis. Int. J. Contemp. Hosp. Manag. 2021, 33, 604–627. [Google Scholar] [CrossRef]
- Liu, X.; Li, M.-Y.; Ma, Y.-M.; Gao, T.-H.; Yuan, D.-N. Personalized tourism product design focused on tourist expectations and online reviews: An integrated MCDM method. Comput. Ind. Eng. 2024, 188, 109860. [Google Scholar] [CrossRef]
- Shu, Z.; González, R.A.C.; García-Miguel, J.P.; Sánchez-Montañés, M. Clustering using ordered weighted averaging operator and 2-tuple linguistic model for hotel segmentation: The case of TripAdvisor. Expert Syst. Appl. 2023, 213, 118922. [Google Scholar] [CrossRef]
- Srivastava, A.; Kumar, V. Hotel attributes and overall customer satisfaction: What did COVID-19 change? Tour. Manag. Perspect. 2021, 40, 100867. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, S.; Law, R.; Jin, Y.; Lyu, Z. How does the COVID-19 pandemic influence tourist rating behaviour? An empirical exploration based on expectation theory. Curr. Issues Tour. 2023, 26, 4052–4068. [Google Scholar] [CrossRef]
- Ridderstaat, J.; Croes, R. A Framework for Classifying Causal Factors of Tourism Demand Seasonality: An Interseason and Intraseason Approach. J. Hosp. Tour. Res. 2020, 44, 733–760. [Google Scholar] [CrossRef]
- Li, S.; Lu, H.; Kong, J.; Yu, Z.; Wang, R. Lean improvement of the stage shows in theme park based on consumer preferences correlation deep mining. Multimed. Tools Appl. 2020, 79, 24487–24506. [Google Scholar] [CrossRef]
- Fan, Z.-P.; Li, G.-M.; Liu, Y. Processes and methods of information fusion for ranking products based on online reviews: An overview. Inf. Fusion 2020, 60, 87–97. [Google Scholar] [CrossRef]
- Mostafa, M.M. Clustering halal food consumers: A Twitter sentiment analysis. Int. J. Mark. Res. 2019, 61, 320–337. [Google Scholar] [CrossRef]
- Chiarello, F.; Gastaldi, L.; Martini, A. Design and implementation of a text mining-based tool to support scoping reviews. Int. J. Technol. Manage. 2023, 91, 147–161. [Google Scholar] [CrossRef]
- Birjali, M.; Kasri, M.; Beni-Hssane, A. A comprehensive survey on sentiment analysis: Approaches, challenges and trends. Knowl. Based Syst. 2021, 226, 107134. [Google Scholar] [CrossRef]
- Guo, Y.; Barnes, S.J.; Jia, Q. Mining meaning from online ratings and reviews: Tourist satisfaction analysis using latent dirichlet allocation. Tour. Manag. 2017, 59, 467–483. [Google Scholar] [CrossRef]
- Hu, N.; Zhang, T.; Gao, B.; Bose, I. What do hotel customers complain about? Text analysis using structural topic model. Tour. Manag. 2019, 72, 417–426. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Peng, J.; Wang, J. The differences in hotel selection among various types of travellers: A comparative analysis with a useful bounded rationality behavioural decision support model. Tour. Manag. 2020, 76, 103961. [Google Scholar] [CrossRef]
- Zhang, H.; Sekhari, A.; Ouzrout, Y.; Bouras, A. Jointly identifying opinion mining elements and fuzzy measurement of opinion intensity to analyze product features. Eng. Appl. Artif. Intell. 2016, 47, 122–139. [Google Scholar] [CrossRef]
- Bi, J.-W.; Liu, Y.; Fan, Z.-P.; Zhang, J. Exploring asymmetric effects of attribute performance on customer satisfaction in the hotel industry. Tour. Manag. 2020, 77, 104006. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, A.; Liu, D.; Bian, Y. Customer preferences extraction for air purifiers based on fine-grained sentiment analysis of online reviews. Knowl. Based Syst. 2021, 228, 107259. [Google Scholar] [CrossRef]
- Wang, W.M.; Tian, Z.G.; Li, Z.; Wang, J.W.; Barenji, A.V.; Cheng, M.N. Supporting the construction of affective product taxonomies from online customer reviews: An affective-semantic approach. J. Eng. Design 2019, 30, 445–476. [Google Scholar] [CrossRef]
- Araque, O.; Corcuera-Platas, I.; Sánchez-Rada, J.F.; Iglesias, C.A. Enhancing deep learning sentiment analysis with ensemble techniques in social applications. Expert Syst. Appl. 2017, 77, 236–246. [Google Scholar] [CrossRef]
- Tang, F.; Fu, L.; Yao, B.; Xu, W. Aspect based fine-grained sentiment analysis for online reviews. Inf. Sci. 2019, 488, 190–204. [Google Scholar] [CrossRef]
- Ordenes, F.V.; Zhang, S. From words to pixels: Text and image mining methods for service research. J. Serv. Manag. 2019, 30, 593–620. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, X.; Wang, M. Predicting overall customer satisfaction: Big data evidence from hotel online textual reviews. Int. J. Hosp. Manag. 2019, 76, 111–121. [Google Scholar] [CrossRef]
- Sun, S.; Jiang, F.; Feng, G.; Wang, S.; Zhang, C. The impact of COVID-19 on hotel customer satisfaction: Evidence from Beijing and Shanghai in China. Int. J. Contemp. Hosp. Manag. 2022, 34, 382–406. [Google Scholar] [CrossRef]
- Chen, K.; Jin, J.; Luo, J. Big consumer opinion data understanding for Kano categorization in new product development. J. Ambient Intell. Humaniz. Comput. 2022, 13, 2269–2288. [Google Scholar] [CrossRef]
- Xiao, Q.; Li, S.; Zhang, X.; Zhang, F.; Yue, Q.; Wan, S. Deconstructing Online Hospitality Review Systems: User Quality Experience Toward Design Features. J. Organ. End User Comput. 2022, 34, 1–17. [Google Scholar] [CrossRef]
- Matzler, K.; Hinterhuber, H.H. How to make product development projects more successful by integrating Kano’s model of customer satisfaction into quality function deployment. Technovation 1998, 18, 25–38. [Google Scholar] [CrossRef]
- Li, S.; Zhu, B.; Zhang, Y.; Liu, F.; Yu, Z. A Two-Stage Nonlinear User Satisfaction Decision Model Based on Online Review Mining: Considering Non-Compensatory and Compensatory Stages. J. Theor. Appl. Electron. Commer. Res. 2024, 19, 272–296. [Google Scholar] [CrossRef]
- Geum, Y.; Seol, H.; Lee, S.; Park, Y. Application of fault tree analysis to the service process: Service tree analysis approach. J. Serv. Manag. 2009, 20, 433–454. [Google Scholar] [CrossRef]
- Gill, A.; Cormican, K.; Clohessy, T. Walking the innovation tightrope: Maintaining balance with an ambidextrous organisation. Int. J. Technol. Manag. 2019, 79, 220–246. [Google Scholar] [CrossRef]
- Park, S.; Yang, Y.; Wang, M. Travel distance and hotel service satisfaction: An inverted U-shaped relationship. Int. J. Hosp. Manag. 2019, 76, 261–270. [Google Scholar] [CrossRef]
- Hou, Z.; Cui, F.; Meng, Y.; Lian, T.; Yu, C. Opinion mining from online travel reviews: A comparative analysis of Chinese major OTAs using semantic association analysis. Tour. Manag. 2019, 74, 276–289. [Google Scholar] [CrossRef]
- Zhong, L.; Morrison, A.M.; Zheng, C.; Li, X. Destination image: A consumer-based, big data-enabled approach. Tour. Rev. 2023, 78, 1060–1077. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Cheng, F.; Yu, S.; Chu, J.; Fan, J.; Hu, Y. Customer satisfaction-oriented product configuration approach based on online product reviews. Multimed. Tools Appl. 2022, 81, 4413–4433. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, H.; Wan, W. Weakness Finder: Find product weakness from Chinese reviews by using aspects based sentiment analysis. Expert Syst. Appl. 2012, 39, 10283–10291. [Google Scholar] [CrossRef]
- Fu, X.; Sun, X.; Wu, H.; Cui, L.; Huang, J.Z. Weakly supervised topic sentiment joint model with word embeddings. Knowl.-Based Syst. 2018, 147, 43–54. [Google Scholar] [CrossRef]
- Chen, Y.; Zhong, Y.; Yu, S.; Xiao, Y.; Chen, S. Exploring Bidirectional Performance of Hotel Attributes through Online Reviews Based on Sentiment Analysis and Kano-IPA Model. Appl. Sci. 2022, 12, 692. [Google Scholar] [CrossRef]
- Donohue, J.C. Understanding Scientific Literatures: A Bibliometric Approach; MIT Press: Cambridge, MA, USA, 1973. [Google Scholar]
- Boo, S.; Busser, J.A. Meeting planners’ online reviews of destination hotels: A twofold content analysis approach. Tour. Manag. 2018, 66, 287–301. [Google Scholar] [CrossRef]
- Song, H.; Lin, S.; Witt, S.F.; Zhang, X. Impact of financial/economic crisis on demand for hotel rooms in Hong Kong. Tour. Manag. 2011, 32, 172–186. [Google Scholar] [CrossRef]
- Chang, H.-H.; Sokol, D.D. How incumbents respond to competition from innovative disruptors in the sharing economy—The impact of Airbnb on hotel performance. Strateg. Manag. J. 2020, 43, 425–446. [Google Scholar] [CrossRef]
- Zhang, Y. Research on the Development Model of Cultural Resources and Chengdu’s Cultural and Leisure Industry. Soc. Sci. 2020, 90–98. [Google Scholar] [CrossRef]
- Zhao, M.; Liu, M.; Xu, C.; Zhang, C. Classifying travellers’ requirements from online reviews: An improved Kano model. Int. J. Contemp. Hosp. Manag. 2024, 36, 91–112. [Google Scholar] [CrossRef]
- Zhou, F.; Ayoub, J.; Xu, Q.; Yang, X.J. A Machine Learning Approach to Customer Needs Analysis for Product Ecosystems. J. Mech. Design 2020, 142, 011101. [Google Scholar] [CrossRef]
- Liu, Y.; Teichert, T.; Rossi, M.; Li, H.; Hu, F. Big data for big insights: Investigating language-specific drivers of hotel satisfaction with 412,784 user-generated reviews. Tour. Manag. 2017, 59, 554–563. [Google Scholar] [CrossRef]
- Abrate, G.; Nicolau, J.L.; Viglia, G. The impact of dynamic price variability on revenue maximization. Tour. Manag. 2019, 74, 224–233. [Google Scholar] [CrossRef]
Beijing | Chengdu | Guangzhou | |||
---|---|---|---|---|---|
Source-Target | W. | Source-Target | W. | Source-Target | W. |
Room-Clean | 8839 | Room-Clean | 10,078 | Room-Clean | 15,557 |
Clean-Neat | 4513 | Clean-Neat | 6007 | Clean-Neat | 9653 |
Traffic-Convenient | 3130 | Front Desk-Enthusiasm | 3870 | Traffic-Convenient | 5730 |
Room-Facilities | 2901 | Traffic-Convenient | 3793 | Room-Facilities | 4917 |
Front Desk-Enthusiasm | 2731 | Room-Facilities | 3691 | Front Desk-Enthusiasm | 4055 |
… | … | … | … | … | … |
No. of Demand | Beijing | Chengdu | Guangzhou | |||
---|---|---|---|---|---|---|
Consumer Demand | Key Attributes | Consumer Demand | Key Attributes | Consumer Demand | Key Attributes | |
D1 | Environment & Facilities | Room, Environment, Facilities, Decoration, Style… | Environment & Facilities | Room, Clean, Environment, Facilities, Decoration… | Environment & Facilities | Room, Clean, Environment, Facilities, Decoration… |
D2 | Front desk service | Front Desk, Enthusiasm, Waiter, Attitude, Thoughtful… | Front desk service | Front Desk, Enthusiasm, Waiter, Attitude, Thoughtful… | Front desk service | Front Desk, Enthusiasm, Waiter, Attitude, Thoughtful… |
D3 | Location & Traffic | Location, Traffic, Travel, Subway Station, Convenient… | Location & Traffic | Location, Traffic, Travel, Subway Station, Convenient… | Check in & Cost-effective | Check In, Cost-Effective, Feeling, Satisfied, Whole… |
D4 | Check in & Cost-effective | Check In, Cost-Effective, Feeling, Price, Whole… | Check in & Cost-effective | Check In, Cost-Effective, Feeling, Price, Satisfied… | Location & Traffic | Location, Traffic, Travel, Apartment, Subway Station… |
D5 | Breakfast & Parking | Breakfast, Parking Lot, Parking, Taste, Buffet… | Breakfast & Parking | Breakfast, Parking Lot, Parking, Taste, Buffet… | Breakfast & Parking | Breakfast, Parking Lot, Parking, Dinner, Taste… |
D6 | Travel type | Children, Like, Business Trip, Live… | Travel type | Children, Business Trip, Live, Business… | Price & Children | Price, Like, Children, Happy, Cheap… |
D7 | Drink | Drink, Fruits, Mineral Water, Yogurt… | Shuttle | Airport, Shuttle, Driver, Pick Up, Drop off… | Shuttle | Airport, Shuttle, Driver, Pick Up, Aircraft… |
D8 | Other | Satisfied, Overall, Network, Sound Insulation, Effect… | Other | Supplies, Sheet, Floor, Vision, Dry And Wet… | Other | Supplies, Wash, Bath, Sheet, Washing Machine… |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, W.; Cui, F.; Wang, P.; Liao, X. Dynamic Mining of Consumer Demand via Online Hotel Reviews: A Hybrid Method. J. Theor. Appl. Electron. Commer. Res. 2024, 19, 1831-1847. https://doi.org/10.3390/jtaer19030090
Yu W, Cui F, Wang P, Liao X. Dynamic Mining of Consumer Demand via Online Hotel Reviews: A Hybrid Method. Journal of Theoretical and Applied Electronic Commerce Research. 2024; 19(3):1831-1847. https://doi.org/10.3390/jtaer19030090
Chicago/Turabian StyleYu, Weiping, Fasheng Cui, Ping Wang, and Xin Liao. 2024. "Dynamic Mining of Consumer Demand via Online Hotel Reviews: A Hybrid Method" Journal of Theoretical and Applied Electronic Commerce Research 19, no. 3: 1831-1847. https://doi.org/10.3390/jtaer19030090
APA StyleYu, W., Cui, F., Wang, P., & Liao, X. (2024). Dynamic Mining of Consumer Demand via Online Hotel Reviews: A Hybrid Method. Journal of Theoretical and Applied Electronic Commerce Research, 19(3), 1831-1847. https://doi.org/10.3390/jtaer19030090