Exploring Consumer Acceptance of AI-Generated Advertisements: From the Perspectives of Perceived Eeriness and Perceived Intelligence
Abstract
:1. Introduction
2. Literature Review and Hypotheses
2.1. SOR Theory
2.2. AIGC and AI-Generated Advertisements
2.3. Characteristics of AI-Generated Advertisements
2.3.1. Verisimilitude
2.3.2. Vitality
2.3.3. Imagination
2.3.4. Synthesis
2.4. Consumer Perceptions
2.5. Mediation of Perceived Eeriness and Perceived Intelligence
3. Methodology
3.1. Survey Procedure
3.2. Measurement Development
3.3. Sampling and Data Collection
4. Data Analysis and Results
4.1. Subject Demographic Information
4.2. Common Method Variance and Multicollinearity
4.3. Measurement Model
4.3.1. Reliability and Validity
4.3.2. Discriminant Validity
4.4. Structural Model
4.4.1. Path Coefficient
4.4.2. Mediating Effect
5. Conclusions and Discussions
5.1. Conclusions
5.2. Theoretical Implications
5.3. Managerial Implications
5.4. Research Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variable | Items | Source |
---|---|---|
Verisimilitude | AI-generated advertisements present a realistic scenario. | Campbell et al. [8] |
The details in AI-generated advertisements look realistic yet natural. | ||
The details in AI-generated advertisements are similar to scenes we see in real life. | ||
Vitality | The AI-generated advertisements show the spirit of life and personality. | Yan [9]; Zheng et al. [81] |
The AI-generated advertisements show raw vitality. | ||
The AI-generated advertisements can be inherited and innovated. | ||
Imagination | The AI-generated advertisements have creative ideas. | Zhou and George [82]; Scott and Bruce [83]; Tierney, Farmer and Graen [84] |
The AI-generated advertisements are innovative. | ||
The AI-generated advertisements show originality. | ||
The AI-generated advertisements are imaginative. | ||
Synthesis | There are obvious signs of synthesis between different elements in AI-generated advertisements. | Arango, Singaraju and Niininen [11]; Whittaker et al. [85] |
AI-generated advertisements as a whole give me the impression that they are cobbled together from different materials. | ||
Some of the detail articulation in the AI advertisements is unnatural. | ||
AI-generated advertisements as a whole give me a sense of disjointed combinations. | ||
Perceived eeriness | I think the advertisements created by AI are creepy. | Wu and Wen [5] |
I think AI-generated advertisements are weird. | ||
I think AI-generated advertisements are unnatural. | ||
I think AI-generated advertisements are bizarre. | ||
Perceived intelligence | AI-generated advertisements are of great quality. | Parayitam, Kakumani and Muddangala [86] |
I believe the products in AI-generated advertisements are functionally excellent. | ||
I think AI-generated advertisements demonstrate a high level of technology. | ||
Willingness to accept | I am willing (or will be willing) to accept AI-generated advertisements. | Vijayasarathy and Jones [88]; Pavlou [89]; Chen and Tan [90] |
I am willing to actively browse or watch incoming AI-generated advertisements messages. | ||
I am willing (or will be willing in the future) to purchase the product or service featured in the AI-generated advertisements. |
References
- Wu, T.; He, S.; Liu, J.; Sun, S.; Liu, K.; Han, Q.-L.; Tang, Y. A brief overview of ChatGPT: The history, status quo and potential future development. IEEE CAA J. Autom. Sin. 2023, 10, 1122–1136. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, Y.; Yan, M.; Su, Z.; Luan, T. A survey on ChatGPT: Al-generated contents, challenges, and solutions. IEEE Open J. Comput. Soc. 2023, 4, 280–302. [Google Scholar] [CrossRef]
- iimedia. 2023. Available online: https://www.iimedia.cn/c400/92537.html (accessed on 1 October 2023).
- Qin, X.; Jiang, Z. The impact of AI on the advertising process: The Chinese experience. J. Advert. 2019, 48, 338–346. [Google Scholar] [CrossRef]
- Wu, L.; Wen, T.J. Understanding AI Advertising from the Consumer Perspective: What Factors Determine Consumer Appreciation of AI-Created advertisements? J. Advert. Res. 2021, 61, 133–146. [Google Scholar] [CrossRef]
- Tao, W.; Gao, S.; Yuan, Y.L. Boundary crossing: An experimental study of individual perceptions toward AIGC. Front. Psychol. 2023, 14, 1185880. [Google Scholar] [CrossRef] [PubMed]
- Göring, S.; Ramachandra Rao, R.R.R.; Merten, R.; Raake, A. Analysis of appeal for realistic AI-generated photos. IEEE Access 2023, 11, 38999–39012. [Google Scholar] [CrossRef]
- Campbell, C.; Plangger, K.; Sands, S.; Kietzmann, J. Preparing for an era of deepfakes and AI-generated ads: A framework for understanding responses to manipulated advertising. J. Advert. 2022, 51, 22–38. [Google Scholar] [CrossRef]
- Yan, Z. Recognition of Significance of Painting from Life in Image Era. In Proceedings of the 2017 International Conference on Innovations in Economic Management and Social Science (IEMSS 2017), Hangzhou, China, 15–16 April 2017. [Google Scholar]
- Rebelo, A.D.P.; Inês, G.D.O.; Damion, D.E.V. The impact of artificial intelligence on the creativity of videos. ACM Trans. Multimedia Comput. Commun. Appl. 2022, 18, 1–27. [Google Scholar] [CrossRef]
- Arango, L.; Singaraju, S.; Niininen, O. Consumer responses to AI-generated charitable giving ads. J. Advert. 2023, 52, 486–503. [Google Scholar] [CrossRef]
- Hua, H.C.; Li, Y.T.; Wang, T.H.; Dong, N.Q.; Li, W.; Cao, J.W. Edge computing with artificial intelligence: A machine learning perspective. ACM Comput. Surv. 2023, 55, 1–35. [Google Scholar] [CrossRef]
- Song, S.W.; Shin, M. Uncanny valley effects on Chatbot trust, purchase intention, and adoption intention in the context of e-commerce: The moderating role of avatar familiarity. Int. J. Hum. Comput. Interact. 2022, 40, 441–456. [Google Scholar] [CrossRef]
- Quadflieg, S.; Ul-Haq, I.; Mavridis, N. Now you feel it, now you don’t: How observing human–robot interactions and human-human interactions can make you feel eerie. Interact. Stud. 2016, 17, 211–247. [Google Scholar] [CrossRef]
- Legg, S.; Hutter, M. A Collection of Definitions of Intelligence. In Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms; IOS Press: Amsterdam, The Netherlands, 2007; pp. 17–24. [Google Scholar]
- Malhotra, G.; Ramalingam, M. Perceived anthropomorphism and purchase intention using artificial intelligence technology: Examining the moderated effect of trust. J. Enterp. Inf. Manag. 2023. [Google Scholar] [CrossRef]
- Sivathanu, B.; Pillai, R.; Metri, B. Customers’ online shopping intention by watching AI-based deepfake advertisements. Int. J. Retail. Distrib. Manag. 2023, 51, 124–145. [Google Scholar] [CrossRef]
- He, T.X. The sentimental fools and the fictitious authors: Rethinking the copyright issues of AI-generated contents in China. Asia Pac. Law Rev. 2019, 27, 218–238. [Google Scholar] [CrossRef]
- Tang, Y.C.; Huang, J.J.; Yao, M.T.; Wei, J.; Li, W.; He, Y.X.; Li, Z.J. A review of design intelligence: Progress, problems, and challenges. Front. Inf. Technol. Electron. Eng. 2019, 20, 1595–1617. [Google Scholar] [CrossRef]
- Song, M.; Chen, H.; Wang, Y.; Duan, Y. Can AI fully replace human designers? Matching effects between declared creator types and advertising appeals on tourists’ visit intentions. J. Destin. Mark. Manag. 2024, 32, 100892. [Google Scholar] [CrossRef]
- Bakpayev, M.; Baek, T.H.; van Esch, P.; Yoon, S. Programmatic creative: AI can think but it cannot feel. Australas. Mark. J. 2022, 30, 90–95. [Google Scholar] [CrossRef]
- Ananthakrishnan, R.; Arunachalam, T. Comparison of consumer perception between human generated and AI aided brand content. Webology 2022, 19, 6293–6302. [Google Scholar]
- Mehrabian, A.; Russell, J.A. The basic emotional impact of environments. Percept. Mot. Ski. 1974, 38, 283–301. [Google Scholar] [CrossRef]
- Lin, S.C.; Tseng, H.T.; Shirazi, F.; Hajli, N.; Tsai, P.T. Exploring factors influencing impulse buying in live streaming shopping: A stimulus-organism-response (SOR) perspective. Asia Pac. J. Mark. Logist. 2022, 35, 1383–1403. [Google Scholar] [CrossRef]
- Errajaa, K.; Hombourger-Barès, S.; Audrain-Pontevia, A.-F. Effects of the in-store crowd and employee perceptions on intentions to revisit and word-of-mouth via transactional satisfaction: A SOR approach. J. Retail. Consum. Serv. 2022, 68, 103087. [Google Scholar] [CrossRef]
- Nikhashemi, S.R.; Knight, H.H.; Nusair, K.; Liat, C.B. Augmented reality in smart retailing: A (n) (A) symmetric approach to continuous intention to use retail brands’ mobile AR apps. J. Retail. Consum. Serv. 2021, 60, 102464. [Google Scholar] [CrossRef]
- Hossain, M.S.; Rahman, M.F. Detection of potential customers’ empathy behavior towards customers’ reviews. J. Retail. Consum. Serv. 2022, 65, 102881. [Google Scholar] [CrossRef]
- Nagano, M.; Ijima, Y.; Hiroya, S. Perceived emotional states mediate willingness to buy from advertising speech. Front. Psychol. 2023, 13, 1014921. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Duan, S.; Li, R. Dynamic advertising insertion strategy with moment-to-moment data using sentiment analysis: The case of danmaku video. J. Electron. Commer. Res. 2022, 23, 160–176. [Google Scholar]
- Fam, K.S.; Liu, Y.; Wei, S.; Edu, T.; Zaharia, R.; Negricea, C. Modeling New Technology Readiness and Acceptance in the Case of B2B Marketing Employees. J. Business-to-Business Mark. 2024, 1–30. [Google Scholar] [CrossRef]
- Jamil, R.A.; Qayyum, A.; Lodhi, M.S. Skepticism toward online advertising: Causes, consequences, and remedial moderators. Int. J. Online Mark. 2022, 12, 1–21. [Google Scholar] [CrossRef]
- Ooi, K.B.; Tan, G.W.H.; Al-Emran, M.; Al-Sharafi, M.A.; Capatina, A.; Chakraborty, A.; Dwivedi, Y.K.; Huang, T.-L.; Kar, A.K.; Lee, V.-H.; et al. The potential of generative artificial intelligence across disciplines: Perspectives and future directions. J. Comput. Inf. Syst. 2023, 1–32. [Google Scholar] [CrossRef]
- Sætra, H.S. Generative AI: Here to stay, but for good? Technol. Soc. 2023, 75, 102372. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, L.; Jin, C.; Gao, J.; Li, X.; Luo, J.; Pan, Z.; Tang, Y.; Wang, J. Recent advances in artificial intelligence generated content. Front. Inf. Technol. Electron. Eng. 2024, 25, 1–5. [Google Scholar] [CrossRef]
- Ford, J.; Jain, V.; Wadhwani, K.; Gupta, D.G. AI advertising: An overview and guidelines. J. Bus. Res. 2023, 166, 15. [Google Scholar] [CrossRef]
- Wang, Z.; Yuan, R.; Luo, J.; Liu, M.J.; Yannopoulou, N. Does personalized advertising have their best interests at heart? A quantitative study of narcissists’ SNS use among Generation Z consumers. J. Bus. Res. 2023, 165, 114070. [Google Scholar] [CrossRef]
- Mariani, M.; Dwivedi, Y.K. Generative artificial intelligence in innovation management: A preview of future research developments. J. Bus. Res. 2024, 175, 114542. [Google Scholar] [CrossRef]
- Arsenyan, J.; Mirowska, A. Almost human? A comparative case study on the social media presence of virtual influencers. Int. J. Hum. Comput. Stud. 2021, 155, 102694. [Google Scholar] [CrossRef]
- Gerlich, M. The power of virtual influencers: Impact on consumer behaviour and attitudes in the age of AI. Adm. Sci. 2023, 13, 178. [Google Scholar] [CrossRef]
- Kirkby, A.; Baumgarth, C.; Henseler, J. To disclose or not disclose, is no longer the question—Effect of AI-disclosed brand voice on brand authenticity and attitude. J. Prod. Brand Manag. 2023, 32, 1108–1122. [Google Scholar] [CrossRef]
- Sundar, S.S. Rise of machine agency: A framework for studying the psychology of human-AI interaction (HAII). J. Comput. Mediat. Commun. 2020, 25, 74–88. [Google Scholar] [CrossRef]
- Sundar, S.S.; Kim, J. Machine heuristic: When we trust computers more than humans with our personal information. In Proceedings of the 2019 Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; pp. 1–9. [Google Scholar]
- Chiarella, S.G.; Torromino, G.; Gagliardi, D.M.; Rossi, D.; Babiloni, F.; Cartocci, G. Investigating the negative bias towards artificial intelligence: Effects of prior assignment of AI-authorship on the aesthetic appreciation of abstract paintings. Comput. Hum. Behav. 2022, 137, 107406. [Google Scholar] [CrossRef]
- Reich, T.; Kaju, A.; Maglio, S.J. How to overcome algorithm aversion: Learning from mistakes. J. Consum. Psychol. 2023, 33, 285–302. [Google Scholar] [CrossRef]
- Campbell, C.; Plangger, K.; Sands, S.; Kietzmann, J.H.; Bates, K. How deepfakes and artificial intelligence could reshape the advertising industry. J. Advert. Res. 2022, 62, 241–251. [Google Scholar] [CrossRef]
- Kietzmann, J.; Lee, L.W.; McCarthy, I.P.; Kietzmann, T.C. Deepfakes: Trick or treat? Bus. Horiz. 2020, 63, 135–146. [Google Scholar] [CrossRef]
- Vaccari, C.; Chadwick, A. Deepfakes and disinformation: Exploring the impact of synthetic political video on deception, uncertainty, and trust in news. Soc. Media Soc. 2020, 6, 2056305120903408. [Google Scholar] [CrossRef]
- Sundar, S.S. The MAIN Model: A Heuristic Approach to Understanding Technology Effects on Credibility; MacArthur Foundation Digital Media and Learning Initiative: Cambridge, MA, USA, 2008. [Google Scholar]
- Henestrosa, A.L.; Greving, H.; Kimmerle, J. Automated journalism: The effects of AI authorship and evaluative information on the perception of a science journalism article. Comput. Hum. Behav. 2022, 138, 107445. [Google Scholar] [CrossRef]
- Cloudy, J.; Banks, J.; Bowman, N.D. The str (AI) ght scoop: Artificial intelligence cues reduce perceptions of hostile media bias. Digit. Journal. 2023, 11, 1577–1596. [Google Scholar] [CrossRef]
- Vakratsas, D.; Wang, X. Artificial intelligence in advertising creativity. J. Advert. 2021, 50, 39–51. [Google Scholar] [CrossRef]
- Chaisatitkul, A.; Luangngamkhum, K.; Noulpum, K.; Kerdvibulvech, C. The power of AI in marketing: Enhancing efficiency and improving customer perception through AI-generated storyboards. Int. J. Inf. Technol. 2024, 16, 137–144. [Google Scholar] [CrossRef]
- Sands, S.; Campbell, C.L.; Plangger, K.; Ferraro, C. Unreal influence: Leveraging AI in influencer marketing. Eur. J. Mark. 2022, 56, 1721–1747. [Google Scholar] [CrossRef]
- Li, Y.P. Film and TV animation production based on artificial intelligence AlphaGd. Mob. Inf. Syst. 2021, 2021, 1104248. [Google Scholar] [CrossRef]
- Vitality. Oxford English Dictionary. 1920. Available online: http://www.oed.com/view/Entry/224025 (accessed on 8 October 2023).
- Chen, L.Y.; Chen, Z.A. Wilderness in ancient Chinese landscape painting. Environ. Ethics. 2020, 42, 253–266. [Google Scholar] [CrossRef]
- Kim, E.-H. An aesthetic study on the great ultimate and the heaven-earth in paintings and calligraphic works. East. Art 2014, 25, 121–142. [Google Scholar]
- Yang, M. Study on communication advantage and creation strategy of suspense advertisement. In Proceedings of the 2016 International Conference on Contemporary Education, Social Sciences and Humanities (ICCESSH 2016), Saint Petersburg, Russia, 27–28 September 2016; International Science and Culture for Academic Contacts. Atlantis Press: Amsterdam, The Netherlands, 2016; pp. 313–315. [Google Scholar]
- Lee, J.H.; Seol, H.J. Analysis of the Make-Up and Colors on the Cosmetic Commercial Advertisement. Korean Soc. Beauty Art 2011, 12, 7–26. [Google Scholar]
- Sun, Y.K.; Yang, C.H.; Lyu, Y.R.; Lin, R.T. From pigments to pixels: A comparison of human and AI painting. Appl. Sci. 2022, 12, 3724. [Google Scholar] [CrossRef]
- Tsai, C.R.; Hong, J.C.; Tai, K.H. Correlates between imagination types and abilities in designing works. Int. J. Technol. Des. Educ. 2023, 33, 841–861. [Google Scholar] [CrossRef]
- Mun, J.; Mun, K.; Kim, S.-W. Scientists’ perceptions of imagination and characteristics of the scientific imagination. J. Korean Assoc. Sci. Educ. 2013, 33, 1403–1417. [Google Scholar] [CrossRef]
- Liu, R.; Chen, B.; Guo, X.; Chen, M.; Qiu, Z.; He, X. Another AI? Artificial imagination for artistic mind map generation. Int. J. Multimedia Data Eng. Manag. 2019, 10, 47–63. [Google Scholar] [CrossRef]
- Malthouse, E.C.; Copulsky, J.R. Artificial intelligence ecosystems for marketing communications. Int. J. Advert. 2023, 42, 128–140. [Google Scholar] [CrossRef]
- Benoit, I.D.; Miller, E.G. When does creativity matter: The impact of consumption motive and claim set-size. J. Consum. Mark. 2019, 36, 449–460. [Google Scholar] [CrossRef]
- Modig, E.; Dahlen, M. Quantifying the advertising-creativity assessments of consumers versus advertising professionals does it matter whom you ask? J. Advert. Res. 2020, 60, 324–336. [Google Scholar] [CrossRef]
- Reinartz, W.; Saffert, P. Creativity in advertising: When it works and when it doesn’t. Harv. Bus. Rev. 2013, 91, 106–111. [Google Scholar]
- Shen, W.B.; Wang, S.Y.; Yu, J.; Liu, Z.Y.; Yuan, Y.; Lu, F. The influence of advertising creativity on the effectiveness of commercial and public service advertisements: A dual-task study. Appl. Cogn. Psychol. 2021, 35, 1308–1320. [Google Scholar] [CrossRef]
- Rosengren, S.; Eisend, M.; Koslow, S.; Dahlen, M. A meta-analysis of when and how advertising creativity works. J. Mark. 2020, 84, 39–56. [Google Scholar] [CrossRef]
- Wang, X.C.; Liang, X.H.; Yang, B.L.; Li, F.W.B. No-reference synthetic image quality assessment with convolutional neural network and local image saliency. Comp. Vis. Media 2019, 5, 193–208. [Google Scholar] [CrossRef]
- Guo, Y. Smart advertising design: A visual aesthetic effect improvement based on image data analysis. Evol. Intell. 2023, 16, 1699–1705. [Google Scholar] [CrossRef]
- Sheehan, B.; Jin, H.S.; Gottlieb, U. Customer service chatbots: Anthropomorphism and adoption. J. Bus. Res. 2020, 115, 14–24. [Google Scholar] [CrossRef]
- Clayton, R.B.; Leshner, G. The uncanny valley: The effects of Rotoscope animation on motivational processing of depression drug messages. J. Broadcast. Electron. Media 2015, 59, 57–75. [Google Scholar] [CrossRef]
- Wang, J.M.; Li, A.Y. The impact of green advertising information quality perception on consumers’ response: An empirical analysis. Sustainability 2022, 14, 13248. [Google Scholar] [CrossRef]
- Li, W.; Jiang, M.; Zhan, W. Why advertise on short video platforms? Optimizing online advertising using advertisement quality. J. Theor. Appl. Electron. Commer. Res. 2022, 17, 1057–1074. [Google Scholar] [CrossRef]
- Kumar, P.; Polonsky, M.; Dwivedi, Y.K.; Kar, A. Green information quality and green brand evaluation: The moderating effects of eco-label credibility and consumer knowledge. Eur. J. Mark. 2021, 55, 2037–2071. [Google Scholar] [CrossRef]
- Tormala, Z.L.; Petty, R.E. Source credibility and attitude certainty: A metacognitive analysis of resistance to persuasion. J. Consum. Psychol. 2004, 14, 427–442. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, C.; Wang, K.; Ba, S.L. Understanding online purchase decision making: The effects of unconscious thought, information quality, and information quantity. Decis. Support Syst. 2012, 53, 772–781. [Google Scholar] [CrossRef]
- Kini, R.B.; Bolar, K.; Rofin, T.M.; Mukherjee, S.; Bhattacharjee, S. Acceptance of location-based advertising by young consumers: A stimulus-organism-response (S-O-R) model perspective. Inf. Syst. Manag. 2023, 41, 132–150. [Google Scholar] [CrossRef]
- Zhang, T.; Gao, T.; Xu, P.; Zhang, J. A review of AI and AI intelligence assessment. In Proceedings of the 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), Wuhan, China, 30 October–1 November 2020; pp. 3039–3044. [Google Scholar]
- Zheng, R.; Yang, B.; Zhou, G. Spirit behind appearance: Facial motion increases facial attractiveness through perceived vitality. Psychol. Aesthet. Creat. Arts 2023. [Google Scholar] [CrossRef]
- Zhou, J.; George, J.M. When job dissatisfaction leads to creativity: Encouraging the expression of voice. Acad. Manag. J. 2001, 44, 682–696. [Google Scholar] [CrossRef]
- Scott, S.G.; Bruce, R.A. Determinants of innovative behavior: A path model of individual innovation in the workplace. Acad. Manag. J. 1994, 37, 580–607. [Google Scholar] [CrossRef]
- Tierney, P.; Farmer, S.M.; Graen, G.B. An examination of leadership and employee creativity: The relevance of traits and relationships. Pers. Psychol. 1999, 52, 591–620. [Google Scholar] [CrossRef]
- Whittaker, L.; Kietzmann, T.C.; Kietzmann, J.; Dabirian, A. “All Around Me Are synthetic Faces”: The Mad World of AI-Generated Media. IT Prof. 2020, 22, 90–99. [Google Scholar] [CrossRef]
- Parayitam, S.; Kakumani, L.; Muddangala, N.B. Perceived risk as a moderator in the relationship between perception of celebrity endorsement and buying behavior: Evidence from rural consumers of India. J. Market. Theory Prac. 2020, 28, 521–540. [Google Scholar] [CrossRef]
- Moussawi, S.; Koufaris, M. Perceived intelligence and perceived anthropomorphism of personal intelligent agents: Scale development and validation. In Proceedings of the 52nd Hawaii International Conference on System Sciences, Maui, HI, USA, 8–11 January 2019. [Google Scholar]
- Vijayasarathy, L.R.; Jones, J.M. Print and Internet catalog shopping: Assessing attitudes and intentions. Internet Res. 2002, 10, 191–202. [Google Scholar] [CrossRef]
- Pavlou, P.A. Consumer Acceptance of Electronic Commerce: Integrating Trust and Risk with the Technology Acceptance Model. Int. J. Electron. Commer. 2003, 7, 101–134. [Google Scholar]
- Chen, L.-D.; Tan, J. Technology adaptation in e-commerce: Key. Eur. Manag. J. 2004, 22, 74–86. [Google Scholar] [CrossRef]
- Sarstedt, M.; Ringle, C.M.; Smith, D.; Reams, R.; Hair, J.F. Partial least squares structural equation modeling (PLS-SEM): A useful tool for family business researchers. J. Fam. Bus. Strategy 2014, 5, 105–115. [Google Scholar] [CrossRef]
- Rigdon, E.E. Rethinking Partial Least Squares Path Modeling: In Praise of Simple Methods. Long Range Plan. 2012, 45, 341–358. [Google Scholar] [CrossRef]
- Fornell, C.; Bookstein, F.L. Two structural equation models: LISREL and PLS applied to consumer exit-voice theory. J. Mark. Res. 1982, 19, 440–452. [Google Scholar] [CrossRef]
- Hair, J.F.J.; Sarstedt, M.H.; Hopkins, L.; Kuppelwieser, V.G. Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. Eur. Bus. Rev. 2014, 26, 106–121. [Google Scholar] [CrossRef]
- Fuller, C.M.; Simmering, M.J.; Atinc, G.; Atinc, Y.; Babin, B.J. Common methods variance detection in business research. J. Bus. Res. 2016, 69, 3192–3198. [Google Scholar] [CrossRef]
- Liang, H.; Saraf, N.; Hu, Q.; Xue, Y. Assimilation of enterprise systems: The effect of institutional pressures and the mediating role of top management. MIS Q. 2007, 31, 59–87. [Google Scholar] [CrossRef]
- Lavery, M.R.; Acharya, P.; Sivo, S.A.; Xu, L.H. Number of predictors and multicollinearity: What are their effects on error and bias in regression? Commun. Stat. Simul. Comput. 2019, 48, 27–38. [Google Scholar] [CrossRef]
- Chin, W.W. The partial least squares approach for structural equation modeling. In Modern Methods for Business Research; Marcoulides, G.A., Ed.; Lawrence Erlbaum Associates Publishers: Mahwah, NJ, USA, 1998; pp. 295–336. [Google Scholar]
- Yang, Q.; Lee, Y.C. The effect of live streaming commerce quality on customers’ purchase intention: Extending the elaboration likelihood model with herd behavior. Behav. Inf. Technol. 2023, 43, 907–928. [Google Scholar] [CrossRef]
- Cheah, J.H.; Lim, X.J.; Ting, H.; Liu, Y.; Quach, S. Are privacy concerns still relevant? Revisiting consumer behaviour in omnichannel retailing. J. Retail. Consum. Serv. 2022, 65, 102242. [Google Scholar] [CrossRef]
- Asad, M.; Halim, Z.; Waqas, M.; Tu, S.S. An In-ad contents-based viewability prediction framework using Artificial Intelligence for Web advertisements. Artif. Intell. Rev. 2021, 54, 5095–5125. [Google Scholar] [CrossRef]
Demographic | Frequency | % |
---|---|---|
Gender | ||
Female | 689 | 60.1 |
Male | 458 | 39.9 |
Age (years) | ||
25 and under | 331 | 28.9 |
26–35 | 557 | 48.6 |
36–45 | 148 | 12.9 |
46–55 | 60 | 5.2 |
56–65 | 41 | 3.6 |
66 and above | 10 | 0.9 |
Education level | ||
Senior high school, secondary vocational school and below | 35 | 3.1 |
Undergraduate, junior college | 913 | 79.6 |
Master | 153 | 13.3 |
PhD or above | 46 | 4.0 |
Career | ||
Student | 202 | 17.6 |
Office worker | 765 | 66.7 |
Civil servant | 61 | 5.3 |
Staff of public institutions | 82 | 7.1 |
Freelance | 18 | 1.6 |
Other | 19 | 1.7 |
Income | ||
RMB 2000 or less | 126 | 11.0 |
RMB 2001–RMB 5000 | 195 | 17.0 |
RMB 5001–RMB 8000 | 274 | 23.9 |
RMB 8001 or more | 552 | 48.1 |
Total | 1147 | 100.0 |
Construct | Items | Std. Loading | CR | AVE | |
---|---|---|---|---|---|
Verisimilitude | VE1 | 0.881 | 0.838 | 0.841 | 0.755 |
VE2 | 0.858 | ||||
VE3 | 0.868 | ||||
Vitality | VI1 | 0.882 | 0.844 | 0.846 | 0.763 |
VI2 | 0.871 | ||||
VI3 | 0.867 | ||||
Imagination | IM1 | 0.815 | 0.849 | 0.853 | 0.688 |
IM2 | 0.816 | ||||
IM3 | 0.860 | ||||
IM4 | 0.827 | ||||
Synthesis | SY1 | 0.882 | 0.912 | 0.916 | 0.792 |
SY2 | 0.875 | ||||
SY3 | 0.896 | ||||
SY4 | 0.905 | ||||
Perceived eeriness | PE1 | 0.843 | 0.892 | 0.896 | 0.755 |
PE2 | 0.883 | ||||
PE3 | 0.854 | ||||
PE4 | 0.893 | ||||
Perceived intelligence | PI1 | 0.865 | 0.808 | 0.810 | 0.723 |
PI2 | 0.849 | ||||
PI3 | 0.836 | ||||
Willingness to accept | WA1 | 0.835 | 0.814 | 0.816 | 0.729 |
WA2 | 0.840 | ||||
WA3 | 0.885 |
Construct | IM | PE | PI | SY | VI | WA | VE |
---|---|---|---|---|---|---|---|
IM | 0.830 | ||||||
PE | −0.629 | 0.869 | |||||
PI | 0.727 | −0.695 | 0.850 | ||||
SY | −0.574 | 0.753 | −0.684 | 0.890 | |||
VI | 0.754 | −0.631 | 0.729 | −0.628 | 0.873 | ||
WA | 0.707 | −0.693 | 0.806 | −0.618 | 0.716 | 0.854 | |
VE | 0.622 | −0.665 | 0.731 | −0.664 | 0.680 | 0.699 | 0.869 |
Construct | IM | PE | PI | SY | VI | WA | VE |
---|---|---|---|---|---|---|---|
IM1 | 0.815 | −0.502 | 0.574 | −0.424 | 0.590 | 0.562 | 0.464 |
IM2 | 0.816 | −0.481 | 0.588 | −0.461 | 0.611 | 0.562 | 0.483 |
IM3 | 0.860 | −0.584 | 0.663 | −0.532 | 0.678 | 0.633 | 0.582 |
IM4 | 0.827 | −0.514 | 0.580 | −0.483 | 0.618 | 0.583 | 0.528 |
PE1 | −0.477 | 0.843 | −0.507 | 0.584 | −0.469 | −0.532 | −0.501 |
PE2 | −0.547 | 0.883 | −0.610 | 0.661 | −0.544 | −0.618 | −0.576 |
PE3 | −0.611 | 0.854 | −0.678 | 0.734 | −0.630 | −0.645 | −0.646 |
PE4 | −0.538 | 0.893 | −0.603 | 0.621 | −0.532 | −0.600 | −0.573 |
PI1 | 0.608 | −0.633 | 0.865 | −0.619 | 0.639 | 0.702 | 0.668 |
PI2 | 0.621 | −0.598 | 0.849 | −0.598 | 0.647 | 0.708 | 0.617 |
PI3 | 0.626 | −0.539 | 0.836 | −0.523 | 0.570 | 0.643 | 0.576 |
SY1 | −0.461 | 0.625 | −0.559 | 0.882 | −0.543 | −0.507 | −0.563 |
SY2 | −0.490 | 0.627 | −0.573 | 0.875 | −0.527 | −0.537 | −0.562 |
SY3 | −0.542 | 0.701 | −0.646 | 0.896 | −0.585 | −0.570 | −0.620 |
SY4 | −0.544 | 0.719 | −0.646 | 0.905 | −0.577 | −0.581 | −0.614 |
VI1 | 0.616 | −0.522 | 0.622 | −0.557 | 0.882 | 0.602 | 0.594 |
VI2 | 0.634 | −0.532 | 0.623 | −0.557 | 0.871 | 0.592 | 0.572 |
VI3 | 0.717 | −0.594 | 0.663 | −0.533 | 0.867 | 0.676 | 0.613 |
WA1 | 0.587 | −0.589 | 0.652 | −0.500 | 0.578 | 0.835 | 0.573 |
WA2 | 0.608 | −0.574 | 0.692 | −0.507 | 0.597 | 0.840 | 0.583 |
WA3 | 0.615 | −0.611 | 0.719 | −0.573 | 0.655 | 0.885 | 0.632 |
VE1 | 0.503 | −0.560 | 0.618 | −0.573 | 0.589 | 0.601 | 0.881 |
VE2 | 0.604 | −0.632 | 0.682 | −0.626 | 0.630 | 0.641 | 0.858 |
VE3 | 0.505 | −0.533 | 0.599 | −0.524 | 0.546 | 0.574 | 0.868 |
H | Path | M | S.E. | T | p | f2 | Remarks | |
---|---|---|---|---|---|---|---|---|
H1a | VE → PE | −0.186 | −0.185 | 0.043 | 4.371 | 0.000 | 0.042 | Supported |
H1b | VE → PI | 0.285 | 0.285 | 0.037 | 7.780 | 0.000 | 0.116 | Supported |
H2a | VI → PE | −0.053 | −0.053 | 0.039 | 1.344 | 0.179 | 0.003 NS | Unsupported |
H2b | VI → PI | 0.185 | 0.185 | 0.036 | 5.079 | 0.000 | 0.039 | Supported |
H3a | IM → PE | −0.196 | −0.197 | 0.044 | 4.412 | 0.000 | 0.044 | Supported |
H3b | IM → PI | 0.288 | 0.287 | 0.038 | 7.576 | 0.000 | 0.111 | Supported |
H4a | SY → PE | 0.484 | 0.484 | 0.046 | 10.432 | 0.000 | 0.325 | Supported |
H4b | SY → PI | −0.213 | −0.213 | 0.037 | 5.834 | 0.000 | 0.074 | Supported |
H5a | PE → WA | −0.256 | −0.257 | 0.036 | 7.158 | 0.000 | 0.107 | Supported |
H5b | PI → WA | 0.628 | 0.627 | 0.034 | 18.403 | 0.000 | 0.645 | Supported |
H | Path | M | S.E. | T | p | 95% CI | Remarks | ||
---|---|---|---|---|---|---|---|---|---|
Lower | Upper | ||||||||
H6a | VE → PE → WA | 0.048 | 0.048 | 0.014 | 3.486 | 0.000 | 0.023 | 0.076 | Supported |
H7a | VE → PI → WA | 0.179 | 0.179 | 0.025 | 7.058 | 0.000 | 0.129 | 0.227 | Supported |
H6b | VI → PE → WA | 0.014 | 0.014 | 0.011 | 1.258 | 0.208 | −0.006 | 0.037 | Unsupported |
H7b | VI → PI → WA | 0.116 | 0.116 | 0.024 | 4.826 | 0.000 | 0.070 | 0.166 | Supported |
H6c | IM → PE → WA | 0.050 | 0.051 | 0.014 | 3.668 | 0.000 | 0.026 | 0.080 | Supported |
H7c | IM → PI → WA | 0.181 | 0.180 | 0.027 | 6.794 | 0.000 | 0.129 | 0.234 | Supported |
H6d | SY → PE → WA | −0.124 | −0.124 | 0.018 | 6.726 | 0.000 | −0.162 | −0.089 | Supported |
H7d | SY → PI → WA | −0.134 | −0.133 | 0.023 | 5.900 | 0.000 | −0.179 | −0.090 | Supported |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, C.; Jia, S.; Lai, J.; Chen, R.; Chang, X. Exploring Consumer Acceptance of AI-Generated Advertisements: From the Perspectives of Perceived Eeriness and Perceived Intelligence. J. Theor. Appl. Electron. Commer. Res. 2024, 19, 2218-2238. https://doi.org/10.3390/jtaer19030108
Gu C, Jia S, Lai J, Chen R, Chang X. Exploring Consumer Acceptance of AI-Generated Advertisements: From the Perspectives of Perceived Eeriness and Perceived Intelligence. Journal of Theoretical and Applied Electronic Commerce Research. 2024; 19(3):2218-2238. https://doi.org/10.3390/jtaer19030108
Chicago/Turabian StyleGu, Chenyan, Shuyue Jia, Jiaying Lai, Ruli Chen, and Xinsiyu Chang. 2024. "Exploring Consumer Acceptance of AI-Generated Advertisements: From the Perspectives of Perceived Eeriness and Perceived Intelligence" Journal of Theoretical and Applied Electronic Commerce Research 19, no. 3: 2218-2238. https://doi.org/10.3390/jtaer19030108
APA StyleGu, C., Jia, S., Lai, J., Chen, R., & Chang, X. (2024). Exploring Consumer Acceptance of AI-Generated Advertisements: From the Perspectives of Perceived Eeriness and Perceived Intelligence. Journal of Theoretical and Applied Electronic Commerce Research, 19(3), 2218-2238. https://doi.org/10.3390/jtaer19030108