Integrated Pest Management

A special issue of Insects (ISSN 2075-4450).

Deadline for manuscript submissions: closed (15 January 2018) | Viewed by 304565

Special Issue Editors

Department of Entomology, Louisiana State University, Baton Rouge, LA 70803, USA
Interests: chemical ecology; insect physiology; plant–insect interactions; host–plant resistance; pest management
Special Issues, Collections and Topics in MDPI journals
Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
Department of Entomology, Louisiana State University, Baton Rouge, LA 70803, USA
Dean Lee Research Station, Louisiana State University Agricultural Center, Alexandria, LA 71302, USA

Special Issue Information

Dear Colleagues,

Integrated Pest Management (IPM) is an approach to managing insect, disease, and weed pests in agricultural systems that was developed over 50 years ago in response to environmental, economic, and other problems associated with the over-reliance on pesticides to control pests. IPM is now the dominant paradigm guiding the development of management programs for pests. However, many management programs still rely too heavily on pesticides, and alternatives to pesticides have failed to fulfill their promise in many cases. Moreover, despite the ostensible centrality of integration in IPM, management tactics for a pest are often developed or studied in isolation from other tactics, and in isolation from management programs for other pests. This special issue will comprise mini-reviews and original article on all aspects of IPM in crops and other systems. Manuscripts exploring the appropriate use of insecticides in IPM, the integration of multiple tactics against single pests, and the integration of management programs for multiple pests are particularly welcome.

Prof. Dr. Michael J. Stout
Dr. Jeff Davis
Dr. Rodrigo Diaz
Dr. Julien M. Beuzelin
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Insects is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (35 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

11 pages, 1923 KiB  
Article
Effect of the Topical Repellent para-Menthane-3,8-diol on Blood Feeding Behavior and Fecundity of the Dengue Virus Vector Aedes aegypti
by Jugyeong Lee, Diane B. Choi, Fang Liu, John P. Grieco and Nicole L. Achee
Insects 2018, 9(2), 60; https://doi.org/10.3390/insects9020060 - 04 Jun 2018
Cited by 3 | Viewed by 4815
Abstract
Dengue fever is an acute disease caused by the dengue virus and transmitted primarily by the mosquito Aedes aegypti. The current strategy for dengue prevention is vector control including the use of topical repellents to reduce mosquito biting. Although N,N [...] Read more.
Dengue fever is an acute disease caused by the dengue virus and transmitted primarily by the mosquito Aedes aegypti. The current strategy for dengue prevention is vector control including the use of topical repellents to reduce mosquito biting. Although N,N-diethyl-m-methylbenzamide (DEET) is the most common active ingredient in topical repellent products, para-menthane-3,8-diol (PMD) is also used commercially. Studies have indicated PMD reduced biting by 90–95% for up to 6–8 h, similar to the efficacy of DEET, depending on the testing environment. The purpose of this study was to evaluate the behavioral effects of PMD on Ae. aegypti blood feeding and fecundity to explore the potential impact of PMD on downstream mosquito life-history traits. Two experiments were performed. In both experiments, cohorts of female Ae. aegypti (Belize strain) were exposed to 20% PMD or ethanol for 10 min in a closed system and introduced to an artificial membrane feeding system. Following a 30min feed time, mosquitoes of Experiment 1 were killed and weighed as a proxy measure of blood meal, whereas mosquitoes of Experiment 2 were monitored for oviposition, a measure of fecundity. Results showed a statistically significant reduction (p < 0.001) in the percentage of Ae. aegypti that blood-fed when exposed to PMD (38%) compared to those non-exposed (49%). No significant difference in fecundity between test populations was indicated. These findings suggest that exposure of Ae. aegypti to 20% PMD may influence the probability of subsequent blood feeding but of those mosquitoes that do blood feed, egg-lay density is not affected. Further studies are warranted to investigate the full range of effects of PMD exposure on other Ae. aegypti life-history traits such as mating, to continue characterizing the potential effects of PMD to impact overall vector population dynamics. Full article
(This article belongs to the Special Issue Integrated Pest Management)
Show Figures

Figure 1

12 pages, 295 KiB  
Article
Tri-Trophic Impacts of Bt-Transgenic Maize on Parasitoid Size and Fluctuating Asymmetry in Native vs. Novel Host-Parasitoid Interactions in East Africa
by Dennis O. Ndolo, Josephine M. Songa and Gábor L. Lövei
Insects 2018, 9(2), 38; https://doi.org/10.3390/insects9020038 - 27 Mar 2018
Cited by 1 | Viewed by 3411
Abstract
Environmental stress can affect trait size and cause an increase in the fluctuating asymmetry (FA) of bilateral morphological traits in many animals. For insect parasitoids, feeding of hosts on transgenic maize, expressing a Bacillus thuringiensis toxin gene is a potential environmental stressor. We [...] Read more.
Environmental stress can affect trait size and cause an increase in the fluctuating asymmetry (FA) of bilateral morphological traits in many animals. For insect parasitoids, feeding of hosts on transgenic maize, expressing a Bacillus thuringiensis toxin gene is a potential environmental stressor. We compared the size of antennae, forewings, and tibia, as well as their FA values, in two parasitoids developed on two East African host species feeding on non-transgenic vs. transgenic maize. The two lepidopteran stem-borer hosts were the native Sesamia calamistis Hampson (Lepidoptera: Noctuidae) and a recent invader, Chilo partellus Swinhoe (Lepidoptera: Crambidae). The two braconid parasitoids were the native, gregarious larval endoparasitoid Cotesia sesamiae and the recently introduced Cotesia flavipes. Both parasitoids attacked both hosts, creating evolutionarily old vs. novel interactions. Transient feeding of hosts on transgenic maize had various effects on FA, depending on trait as well as the host and parasitoid species. These effects were usually stronger in evolutionarily novel host–parasitoid associations than in the older, native ones. These parameters have capacity to more sensitively indicate the effects of potential stressors and merit further consideration. Full article
(This article belongs to the Special Issue Integrated Pest Management)
1127 KiB  
Communication
Variable Isotopic Compositions of Host Plant Populations Preclude Assessment of Aphid Overwintering Sites
by Michael S. Crossley, Shawn A. Steffan, David J. Voegtlin, Krista L. Hamilton and David B. Hogg
Insects 2017, 8(4), 128; https://doi.org/10.3390/insects8040128 - 05 Dec 2017
Cited by 3 | Viewed by 4385
Abstract
Soybean aphid (Aphis glycines Matsumura) is a pest of soybean in the northern Midwest whose migratory patterns have been difficult to quantify. Improved knowledge of soybean aphid overwintering sites could facilitate the development of control efforts with exponential impacts on aphid densities [...] Read more.
Soybean aphid (Aphis glycines Matsumura) is a pest of soybean in the northern Midwest whose migratory patterns have been difficult to quantify. Improved knowledge of soybean aphid overwintering sites could facilitate the development of control efforts with exponential impacts on aphid densities on a regional scale. In this preliminary study, we explored the utility of variation in stable isotopes of carbon and nitrogen to distinguish soybean aphid overwintering origins. We compared variation in bulk 13C and 15N content in buckthorn (Rhamnus cathartica L.) and soybean aphids in Wisconsin, among known overwintering locations in the northern Midwest. Specifically, we looked for associations between buckthorn and environmental variables that could aid in identifying overwintering habitats. We detected significant evidence of correlation between the bulk 13C and 15N signals of soybean aphids and buckthorn, despite high variability in stable isotope composition within and among buckthorn plants. Further, the 15N signal in buckthorn varied predictably with soil composition. However, lack of sufficient differentiation of geographic areas along axes of isotopic and environmental variation appears to preclude the use of carbon and nitrogen isotopic signals as effective predictors of likely aphid overwintering sites. These preliminary data suggest the need for future work that can further account for variability in 13C and 15N within/among buckthorn plants, and that explores the utility of other stable isotopes in assessing likely aphid overwintering sites. Full article
(This article belongs to the Special Issue Integrated Pest Management)
Show Figures

Graphical abstract

2243 KiB  
Article
Compatibility and Efficacy of Isaria fumosorosea with Horticultural Oils for Mitigation of the Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Liviidae)
by Vivek Kumar, Pasco B. Avery, Juthi Ahmed, Ronald D. Cave, Cindy L. McKenzie and Lance S. Osborne
Insects 2017, 8(4), 119; https://doi.org/10.3390/insects8040119 - 31 Oct 2017
Cited by 16 | Viewed by 6119
Abstract
Horticultural oils are an important component of integrated management programs of several phytophagous arthropods and pathogens affecting fruit, ornamentals and vegetables in greenhouse and field production systems. Although effective against the target pest, their incompatibility with biological control agents can compromise efforts to [...] Read more.
Horticultural oils are an important component of integrated management programs of several phytophagous arthropods and pathogens affecting fruit, ornamentals and vegetables in greenhouse and field production systems. Although effective against the target pest, their incompatibility with biological control agents can compromise efforts to develop eco-friendly management programs for important agricultural pests. In this study, we assessed the in vitro effect of selected refined petroleum oils used in citrus and other horticultural crops with a biopesticide containing the entomopathogenic fungi, Isaria fumosorosea (PFR-97) under laboratory conditions. Further, we used leaf disk bioassays to evaluate the combined efficacy of petroleum oils and I. fumosorosea against the Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae), a major pest of citrus in the United States. All five petroleum oil treatments (Orchex, Sun Pure, Conoco Blend -1, Conoco Blend -2, and JMS) were compatible with I. fumosorosea blastospores, as none of them were found to affect I. fumosorosea colony-forming units and radial fungal growth measured at 3, 6, 9, and 12 days post-inoculation. All mixed treatments performed better than I. fumosorosea alone against D. citri, where the highest mean survival time of D. citri was 12.5 ± 0.7 days. No significant differences in D. citri survival time and I. fumosorosea growth (fungal development index) on dead cadavers, which is important for determining their horizontal transmission, were observed when mixed with Orchex, Sun Pure, Conoco Blend -2, and JMS. Results indicated that horticultural oils in combination with I. fumosorosea could offer citrus growers an alternative treatment for integrating into their current management programs while battling against D. citri in citrus production systems. Due to their eco-friendly, broad-spectrum effect, it could provide control against various citrus pests, while also encouraging the retention of effective chemistries for a longer period in the marketplace. However promising, these combination treatments need to be tested further with I. fumosorosea under grove conditions to confirm their field efficacy. Full article
(This article belongs to the Special Issue Integrated Pest Management)
Show Figures

Figure 1

374 KiB  
Short Note
Comparison of Efficiency of BG-Sentinel Traps Baited with Mice, Mouse-Litter, and CO2 Lures for Field Sampling of Male and Female Aedes albopictus Mosquitoes
by Gilbert Le Goff, David Damiens, Abdoul-Hamid Ruttee, Laurent Payet, Cyrille Lebon, Jean-Sébastien Dehecq, Martin Geier and Louis-Clément Gouagna
Insects 2017, 8(3), 95; https://doi.org/10.3390/insects8030095 - 01 Sep 2017
Cited by 7 | Viewed by 4659
Abstract
Determining the abundance and distribution of male mosquitoes in the wild and establishing species seasonality in candidate pilot sites is of particular interest with respect to the use of the sterile-male technique. With the knowledge that using mice as bait in BG-Sentinel traps [...] Read more.
Determining the abundance and distribution of male mosquitoes in the wild and establishing species seasonality in candidate pilot sites is of particular interest with respect to the use of the sterile-male technique. With the knowledge that using mice as bait in BG-Sentinel traps effectively enhances Aedes albopictus male and female trapping success, the present study was designed to determine whether attractants derived from mouse odour blend could be a viable substitute for live mice to lure Ae. albopictus mosquitoes into traps. The effects of baiting BG-Sentinel traps with mice, carbon dioxide (CO2), and attractants derived from litter mouse odours (mouse litter (ML)) and a mouse odour blend (MOB) on the efficiency of trapping Ae. albopictus males and females were tested using a Latin square design. The BG-Sentinel trap baited with CO2 + ML caught a significantly larger number of mosquitoes compared to traps baited with mice only. The BG-Sentinel traps containing only CO2 or CO2 + MOB, however, did not catch significantly more mosquitoes compared to the other traps. The proportions of males caught in the BG-Sentinel traps did not differ significantly between the respective attractants. The results from this study confirm that CO2 bait is efficient to provide a reliable estimation method for Ae. albopictus adult male abundance in the wild, and suggest that mouse litter baits in combination with CO2 could be used to enhance Aedes trapping success in BG-Sentinel traps. Full article
(This article belongs to the Special Issue Integrated Pest Management)
Show Figures

Figure 1

6263 KiB  
Article
Genitalic Differentiations in Neoleucinodes elegantalis (Gueneé) (Lepidoptera: Crambidae) Associated with Solanaceae Crops in Ecuador
by Michelle Noboa, William Viera, Ana Díaz, Wilson Vásquez and Lenin Ron
Insects 2017, 8(3), 91; https://doi.org/10.3390/insects8030091 - 31 Aug 2017
Cited by 4 | Viewed by 5365
Abstract
Neoleucinodes elegantalis (Guenée) is an oligophagous species of plants in the Solanaceae family that has a broad geographical distribution in the tropical zones of South America. It is the most important insect pest of naranjilla (Solanum quitoense Lamarck), a crop grown in [...] Read more.
Neoleucinodes elegantalis (Guenée) is an oligophagous species of plants in the Solanaceae family that has a broad geographical distribution in the tropical zones of South America. It is the most important insect pest of naranjilla (Solanum quitoense Lamarck), a crop grown in threatened areas of the tropical old-growth forest in Ecuador. In this study, two host-specific populations of N. elegantalis were collected from infested fruit of naranjilla and tree tomato (Solanum betaceum Cavanilles) in different locations. Sexually virgin adult insects (93 females and 103 males) were dissected to extract their genitalia to measure 12 morphological variables in females and six in males, resulting in six and four informative variables respectively. Using univariate and multivariate analysis of variance, it was found that the Solanaceous host was the main factor differentiating the area measurements of the seventh abdominal segment and ostium bursae in female genitalia, and cornuti length in male genitalia. Principal components generated with these measurements were employed in a logistic regression model for the classification of the Solanaceous host. Female genitalia of individuals from S. betaceum showed significantly larger ostium bursae relative to female genitalia from S. quitoense. For males, individuals collected from S. betaceum showed longer cornuti length than samples collected from S. quitoense. The results suggest genotypic differentiation according to the Solanaceous host or phenotypic plasticity in N. elegantalis. Further molecular and bio-geographical studies are needed to properly differentiate N. elegantalis populations that would help in the control of this pest. Full article
(This article belongs to the Special Issue Integrated Pest Management)
Show Figures

Figure 1

1867 KiB  
Article
Wavelength and Polarization Affect Phototaxis of the Asian Citrus Psyllid
by Thomson M. Paris, Sandra A. Allan, Bradley J. Udell and Philip A. Stansly
Insects 2017, 8(3), 88; https://doi.org/10.3390/insects8030088 - 19 Aug 2017
Cited by 21 | Viewed by 6940
Abstract
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is a primary pest of citrus due to its status as a vector of the citrus disease, huanglongbing. We evaluated the effects of light of specific wavelength and polarization on phototactic behavior of D. [...] Read more.
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is a primary pest of citrus due to its status as a vector of the citrus disease, huanglongbing. We evaluated the effects of light of specific wavelength and polarization on phototactic behavior of D. citri using a horizontal bioassay arena. Wavelength-associated positive phototaxis was associated with short wavelength UV (350–405 nm) targets whereas little or no responses were seen in longer wavelength targets in the visible spectrum from green to orange (500–620 nm). Distance walked towards the visual target was greater for UV/blue wavelengths (350–430 nm) than for longer wavelengths. Distances walked towards 365 nm light were greater than to white light, and distances travelled to green, yellow and orange light were similar to those in darkness. A reduced light intensity decreased responses to white and UV (365 nm) light. Polarized light was discriminated and D. citri travelled greater distance in response to white vertically polarized light than to horizontally polarized or unpolarized light of equal intensity. Responses to polarized 405 nm light were greater than to unpolarized light, although without an effect of polarization plane. For 500 nm light, there was no difference between responses to polarized or unpolarized light. There was no effect of age on responses to 405 nm light although 1 day old psyllids travelled faster in the presence of 500 nm green compared to 4–7 day old psyllids. Movement in response to UV and relative stasis in response to longer wavelength light is consistent with observed behaviors of settling on foliage for feeding and dispersing out of the canopy when flush needed for reproduction is scarce. Full article
(This article belongs to the Special Issue Integrated Pest Management)
Show Figures

Figure 1

276 KiB  
Article
Efficacy of Chemicals for the Potential Management of the Queensland Fruit Fly Bactrocera tryoni (Froggatt) (Diptera: Tephritidae)
by Olivia L. Reynolds, Terrence J. Osborne and Idris Barchia
Insects 2017, 8(2), 49; https://doi.org/10.3390/insects8020049 - 09 May 2017
Cited by 18 | Viewed by 6612
Abstract
This study investigated alternative in-field chemical controls against Bactrocera tryoni (Froggatt). Bioassay 1 tested the mortality of adults exposed to fruit and filter paper dipped in insecticide, and the topical application of insecticide to adults/fruit. Bioassay 2 measured the mortality of adults permitted [...] Read more.
This study investigated alternative in-field chemical controls against Bactrocera tryoni (Froggatt). Bioassay 1 tested the mortality of adults exposed to fruit and filter paper dipped in insecticide, and the topical application of insecticide to adults/fruit. Bioassay 2 measured the mortality of adults permitted to oviposit on fruit dipped in insecticide and aged 0, 1, 3, or 5 days, plus the production of offspring. Bioassay 3 tested infested fruit sprayed with insecticide. The field bioassay trialed the mortality of adults exposed to one- and five-day insecticide residues on peaches, and subsequent offspring. Abamectin, alpha-cypermethrin, clothianidin, dimethoate (half-label rate), emamectin benzoate, fenthion (half- and full-label rate), and trichlorfon were the most efficacious in bioassay 1, across 18 tested insecticide treatments. Overall, the LT50 value was lowest for fenthion (full-label rate), clothianidin, and alpha-cypermethrin. Fenthion, emamectin benzoate, and abamectin had the greatest effect on adult mortality and offspring production. Infested fruit treated with acetamiprid, fenthion, and thiacloprid produced no/very few offspring. Alpha-cypermethrin demonstrated good field efficacy against adults (one day post treatment: 97.2% mortality, five day post treatment: 98.8% mortality) and subsequent offspring (100% across one and five day post treatments), comparable to that of fenthion (full-label rate) (100% mortality for offspring and adults across both post treatments). Alpha-cypermethrin is a possible alternative to fenthion against B. tryoni; as a pyrethroid, it may not be desirable if adjunct biological control is imperative. Thiacloprid and Acetamiprid may be useful as a post-harvest treatment. Full article
(This article belongs to the Special Issue Integrated Pest Management)
1117 KiB  
Article
Flight Synchrony among the Major Moth Pests of Cranberries in the Upper Midwest, USA
by Shawn A. Steffan, Merritt E. Singleton, Jayne Sojka, Elissa M. Chasen, Annie E. Deutsch, Juan E. Zalapa and Christelle Guédot
Insects 2017, 8(1), 26; https://doi.org/10.3390/insects8010026 - 26 Feb 2017
Cited by 3 | Viewed by 5045
Abstract
The cranberry fruitworm (Acrobasis vaccinii Riley), sparganothis fruitworm (Sparganothis sulfureana Clemens), and blackheaded fireworm (Rhopobota naevana Hübner) are historically significant pests of cranberries (Vaccinium macrocarpon Aiton) in the Upper Midwest (Wisconsin), USA. Their respective natural histories are well documented [...] Read more.
The cranberry fruitworm (Acrobasis vaccinii Riley), sparganothis fruitworm (Sparganothis sulfureana Clemens), and blackheaded fireworm (Rhopobota naevana Hübner) are historically significant pests of cranberries (Vaccinium macrocarpon Aiton) in the Upper Midwest (Wisconsin), USA. Their respective natural histories are well documented but correlations between developmental benchmarks (e.g., larval eclosion) and degree-day accruals are not yet known. Treatment timings are critical to the optimization of any given control tactic, and degree-day accrual facilitates optimization by quantifying the developmental status of pest populations. When key developmental benchmarks in the pest life cycle are linked to degree-days, real-time weather data can be used to predict precise treatment timings. Here, we provide the degree-day accumulations associated with discrete biological events (i.e., initiation of flight and peak flight) for the three most consistent moth pests of cranberries in Wisconsin. Moths were trapped each spring and summer from 2003 to 2011. To characterize flight dynamics and average timing of flight initiation, pheromone-baited trap-catch data were tallied for all three pest species within each of seven growing seasons. These flight dynamics were then associated with the corresponding degree-day accumulations generated using the cranberry plant’s developmental thresholds. Finally, models were fit to the data in order to determine the peak flight of each species. The initiation of the spring flight among all three moth species was highly synchronous, aiding in the timing of control tactics; however, there were substantial differences in the timing of peak flight among the moth species. Characterization of the relationship between temperature and pest development allows pest management professionals to target specific life stages, improving the efficacy of any given pest control tactic. Full article
(This article belongs to the Special Issue Integrated Pest Management)
Show Figures

Figure 1

1060 KiB  
Article
Potential for Using Acetic Acid Plus Pear Ester Combination Lures to Monitor Codling Moth in an SIT Program
by Gary J. R. Judd
Insects 2016, 7(4), 68; https://doi.org/10.3390/insects7040068 - 25 Nov 2016
Cited by 6 | Viewed by 3677
Abstract
Studies were conducted in commercial apple orchards in British Columbia, Canada, to determine whether lures combining ethyl-(E,Z)-2,4-decadienoate, pear ester (PE), with either acetic acid (AA) or sex pheromone, (E,E)-8,10-dodecadien-1-ol (codlemone), might improve monitoring of codling [...] Read more.
Studies were conducted in commercial apple orchards in British Columbia, Canada, to determine whether lures combining ethyl-(E,Z)-2,4-decadienoate, pear ester (PE), with either acetic acid (AA) or sex pheromone, (E,E)-8,10-dodecadien-1-ol (codlemone), might improve monitoring of codling moth, Cydia pomonella (L.), in an area-wide programme integrating sterile insect technology (SIT) and mating disruption (MD). Catches of sterile and wild codling moths were compared in apple orchards receiving weekly delivery of sterile moths (1:1 sex ratio) using white delta traps baited with either AA or PE alone, and in combination. Sterile and wild codling moths responded similarly to these kairomone lures. For each moth sex and type (sterile and wild), AA-PE lures were significantly more attractive than AA or PE alone. Bisexual catches with AA-PE lures were compared with those of commercial bisexual lures containing 3 mg of codlemone plus 3 mg of PE (Pherocon CM-DA Combo lure, Trécé Inc., Adair, OK, USA), and to catches of males with standard codlemone-loaded septa used in SIT (1 mg) and MD (10 mg) programmes, respectively. CM-DA lures caught the greatest number of sterile and wild male moths in orchards managed with SIT alone, or combined with MD, whereas AA-PE lures caught 2–3× more females than CM-DA lures under both management systems. Sterile to wild (S:W) ratios for male versus female moths in catches with AA-PE lures were equivalent, whereas in the same orchards, male S:W ratios were significantly greater than female S:W ratios when measured with CM-DA lures. Male S:W ratios measured with CM-DA lures were similar to those with codlemone lures. CM-DA and codlemone lures appear to overestimate S:W ratios as measured by AA-PE lures, probably by attracting relatively more sterile males from long range. Using AA-PE lures to monitor codling moths in an SIT programme removes fewer functional sterile males and reduces the need for trap maintenance compared with using codlemone lures. AA-PE lures allow detection of wild female moths that may measure damage potential more accurately than detection of wild males. The short-range activity of AA-PE lures compared with that of codlemone-based lures appears to improve the ability to measure S:W ratios and the impact of SIT on population control near the site where wild moths are trapped. Full article
(This article belongs to the Special Issue Integrated Pest Management)
Show Figures

Figure 1

693 KiB  
Article
Beyond Focal Pests: Impact of a Neonicotinoid Seed Treatment and Resistant Soybean Lines on a Non-Target Arthropod
by Tülin Özsisli and Deirdre A. Prischmann-Voldseth
Insects 2016, 7(4), 64; https://doi.org/10.3390/insects7040064 - 11 Nov 2016
Cited by 3 | Viewed by 4214
Abstract
Integrated pest management (IPM) tactics may effectively control focal pests, but it is also important to test the compatibility of different tactics, and consider non-target organisms. We investigated the effects of a neonicotinoid seed treatment and Rag resistance genes used for soybean aphid [...] Read more.
Integrated pest management (IPM) tactics may effectively control focal pests, but it is also important to test the compatibility of different tactics, and consider non-target organisms. We investigated the effects of a neonicotinoid seed treatment and Rag resistance genes used for soybean aphid (Aphis glycines Matsumura) control on reproduction of a non-target herbivore (twospotted spider mite, Tetranychus urticae Koch) in short-term greenhouse experiments. We also examined interactions between spider mites and a specialist phytoseiid mite [Ambylseius fallacis (Garman)] and assessed the effects of a co-occurring opportunistic omnivore [Frankliniella occidentalis (Pergande)] by including thrips density as a covariate. There were no interactive or main effects of the presence of Rag genes on the densities of any of the arthropods. Overall, effects of the seed treatment on spider mite densities varied, with no difference when mites were confined in clip cages, and higher populations on seed-treated plants when on whole plants. Predatory mites had a consistent negative impact on spider mites, and densities of A. fallacis immatures were similar between seed treated and non-seed treated plants. However, the relationship between spider mite and thrips densities was different between these two plant types, but only in the clip cage experiment lacking predatory mites. This research highlights the importance of considering how IPM tactics might affect non-target organisms. Full article
(This article belongs to the Special Issue Integrated Pest Management)
Show Figures

Figure 1

677 KiB  
Article
Susceptibility of Bemisia tabaci MEAM1 (Hemiptera: Aleyrodidae) to Imidacloprid, Thiamethoxam, Dinotefuran and Flupyradifurone in South Florida
by Hugh A. Smith, Curtis A. Nagle, Charles A. MacVean and Cindy L. McKenzie
Insects 2016, 7(4), 57; https://doi.org/10.3390/insects7040057 - 20 Oct 2016
Cited by 34 | Viewed by 5430
Abstract
Populations of Bemisa tabaci MEAM1 were established from nineteen locations in south Florida, primarily from commercial tomato fields, and were tested using a cotton leaf petiole systemic uptake method for susceptibility to the nicotinic acetylcholine agonist insecticides imidacloprid, thiamethoxam, dinotefuran and flupyradifurone. Eleven [...] Read more.
Populations of Bemisa tabaci MEAM1 were established from nineteen locations in south Florida, primarily from commercial tomato fields, and were tested using a cotton leaf petiole systemic uptake method for susceptibility to the nicotinic acetylcholine agonist insecticides imidacloprid, thiamethoxam, dinotefuran and flupyradifurone. Eleven populations produced LC50s for one or more chemicals that were not significantly different from the susceptible laboratory colony based on overlapping fiducial limits, indicating some degree of susceptibility. LC50s more than a 100-fold the laboratory colony were measured in at least one population for each material tested, indicating tolerance. LC50s (ppm) from field populations ranged from 0.901–24.952 for imidacloprid, 0.965–24.430 for thiamethoxam, 0.043–3.350 for dinotefuran and 0.011–1.471 for flupyradifurone. Based on overlapping fiducial limits, there were no significant differences in relative mean potency estimates for flupyradifurone and dinotefuran in relation to imidacloprid and thiamethoxam. Full article
(This article belongs to the Special Issue Integrated Pest Management)
Show Figures

Figure 1

610 KiB  
Article
Pickleworm (Diaphania nitidalis Cramer) Neonate Feeding Preferences and the Implications for a Push-Pull Management System
by Rosalie Leiner and Helen Spafford
Insects 2016, 7(3), 32; https://doi.org/10.3390/insects7030032 - 05 Jul 2016
Cited by 12 | Viewed by 3989
Abstract
Push-pull cropping approaches for pest management target the oviposition behavior of adult females. However, insect larvae may move from the natal host and undermine the effectiveness of this approach. We investigated the longevity and feeding preference of pickleworm neonates (Diaphania nitidalis Cramer [...] Read more.
Push-pull cropping approaches for pest management target the oviposition behavior of adult females. However, insect larvae may move from the natal host and undermine the effectiveness of this approach. We investigated the longevity and feeding preference of pickleworm neonates (Diaphania nitidalis Cramer (Lepidoptera: Crambidae)) in relation to a potential push-pull cropping approach incorporating squash as a trap crop (pull) and watermelon as a deterrent intercrop (push) to protect a main crop of cantaloupe. Neonates could survive between 24 to 64 h without food, indicating they have some initial energy reserves to keep alive while in search of a suitable feeding site. To assess neonate feeding preferences, naive neonates were given the choice of five foods; leaves of squash, cantaloupe, watermelon, bean, and a pinto bean-based artificial diet. To assess if previous feeding experience influences neonate food source preference, neonates were allowed to feed on one of the five foods for 24 h and then given the same choice of the five food sources. The neonates, with or without previous feeding experience, did not appear to have a significant preference for any of the cucurbits: squash, cantaloupe, or watermelon, but they did prefer a cucurbit to the bean leaf or artificial diet. Feeding experience on one of these non-host foods made neonates more accepting of these food sources in the choice arena even when host plant food sources became available. It appears that neonate feeding preferences of pickleworm would neither hinder nor enhance the potential success of the proposed cucurbits to be used in a potential push-pull cropping approach for pickleworm management. Full article
(This article belongs to the Special Issue Integrated Pest Management)
Show Figures

Figure 1

819 KiB  
Article
Oviposition and Sex Ratio of the Redbanded Stink Bug, Piezodorous guildinii, in Soybean
by Joshua H. Temple, Jeffrey A. Davis, Jarrod T. Hardke, Paul P. Price and B. Rogers Leonard
Insects 2016, 7(2), 27; https://doi.org/10.3390/insects7020027 - 17 Jun 2016
Cited by 4 | Viewed by 4538
Abstract
Redbanded stink bug, Piezodorus guildinii (Westwood), is a significant soybean pest across the mid-south region of the United States. The objectives of these studies were to characterize: (1) redbanded stink bug oviposition in relationship to soybean maturity group (MG), plant structure, crop phenology, [...] Read more.
Redbanded stink bug, Piezodorus guildinii (Westwood), is a significant soybean pest across the mid-south region of the United States. The objectives of these studies were to characterize: (1) redbanded stink bug oviposition in relationship to soybean maturity group (MG), plant structure, crop phenology, and vertical distribution within the plant canopy; and (2) redbanded stink bug adult sex ratios in relationship to soybean phenology. A total of 5645 redbanded stink bug eggs in 421 egg masses (clusters) were field collected from naturally-occurring populations in MG IV and V soybean over a three year period (2009 to 2011). The mean number of eggs within a cluster was 16.6 ± 0.3. Plant structures by MG interactions were highly significant with more egg masses oviposited on leaves in MG IV (79.4%) and more on pods in MG V (72.7%). The ratio of females to males was similar in all soybean growth stages except R5, where the sex ratio increased to 1.4:1, coinciding with peak oviposition. Only 29.9% of egg clusters in MG IV and 18.3% of egg clusters in MG V were oviposited in the upper 35 cm of the soybean canopy. Based on these results, sampling strategies and insecticide application placement for stink bugs may require modification. Full article
(This article belongs to the Special Issue Integrated Pest Management)
Show Figures

Figure 1

770 KiB  
Article
Antagonistic Interactions between the African Weaver Ant Oecophylla longinoda and the Parasitoid Anagyrus pseudococci Potentially Limits Suppression of the Invasive Mealybug Rastrococcus iceryoides
by Chrysantus M. Tanga, Sunday Ekesi, Prem Govender, Peterson W. Nderitu and Samira A. Mohamed
Insects 2016, 7(1), 1; https://doi.org/10.3390/insects7010001 - 23 Dec 2015
Cited by 12 | Viewed by 5619
Abstract
The ant Oecophylla longinoda Latreille forms a trophobiotic relationship with the invasive mealybug Rastrococus iceryoides Green and promotes the latter’s infestations to unacceptable levels in the presence of their natural enemies. In this regard, the antagonistic interactions between the ant and the parasitoid [...] Read more.
The ant Oecophylla longinoda Latreille forms a trophobiotic relationship with the invasive mealybug Rastrococus iceryoides Green and promotes the latter’s infestations to unacceptable levels in the presence of their natural enemies. In this regard, the antagonistic interactions between the ant and the parasitoid Anagyrus pseudococci Girault were assessed under laboratory conditions. The percentage of parasitism of R. iceryoides by A. pseudococci was significantly higher on “ant-excluded” treatments (86.6% ± 1.27%) compared to “ant-tended” treatments (51.4% ± 4.13%). The low female-biased sex-ratio observed in the “ant-tended” treatment can be attributed to ants’ interference during the oviposition phase, which disrupted parasitoids’ ability to fertilize eggs. The mean foraging time, host handling time and number of successful oviposition in “ant-excluded” treatment were significantly higher compared to “ant-tended” treatments. When ant workers were allowed access to sterilized sand grains, mummified and unmummified R. iceryoides, they selectively removed the mummified mealybugs, indicating that they recognized the mummies as potential foods (1.2 ± 0.46 to 7.8 ± 1.17 mummies at 10 min intervals for 2 h). Percentage emergence from mummified R. iceryoides removed by the ants was significantly lower compared to emergence from mummies not exposed to ants. Although, host seeking parasitoids frequently evaded attacks, some were killed by the foraging ant workers (2.0 ± 0.38 to 6.0 ± 0.88 at 10 min intervals for 2 h). These results suggest for the first time that the presence of O. longinoda has a detrimental effect on the abundance, reproductive success and possibly oviposition strategy of female parasitoids, which might be a delimiting factor in field conditions if both natural enemies are to be recommended for use within the same agro-ecosystem. Full article
(This article belongs to the Special Issue Integrated Pest Management)
Show Figures

Graphical abstract

602 KiB  
Article
A Fundamental Step in IPM on Grapevine: Evaluating the Side Effects of Pesticides on Predatory Mites
by Alberto Pozzebon, Paola Tirello, Renzo Moret, Marco Pederiva and Carlo Duso
Insects 2015, 6(4), 847-857; https://doi.org/10.3390/insects6040847 - 09 Oct 2015
Cited by 19 | Viewed by 5684
Abstract
Knowledge on side effects of pesticides on non-target beneficial arthropods is a key point in Integrated Pest Management (IPM). Here we present the results of four experiments conducted in vineyards where the effects of chlorpyrifos, thiamethoxam, indoxacarb, flufenoxuron, and tebufenozide were evaluated on [...] Read more.
Knowledge on side effects of pesticides on non-target beneficial arthropods is a key point in Integrated Pest Management (IPM). Here we present the results of four experiments conducted in vineyards where the effects of chlorpyrifos, thiamethoxam, indoxacarb, flufenoxuron, and tebufenozide were evaluated on the generalist predatory mites Typhlodromus pyri Scheuten and Amblyseius andersoni (Chant), key biocontrol agents of herbivorous mites on grapevines. Results show that indoxacarb and tebufenozide had a low impact on the predatory mites considered here, while a significant impact was observed for chlorpyrifos, flufenoxuron, and thiamethoxam. The information obtained here should be considered in the design of IPM strategies on grapevine. Full article
(This article belongs to the Special Issue Integrated Pest Management)
Show Figures

Figure 1

522 KiB  
Article
Repellency of Plant Extracts against the Legume Flower Thrips Megalurothrips sjostedti (Thysanoptera: Thripidae)
by Andnet Abtew, Sevgan Subramanian, Xavier Cheseto, Serge Kreiter, Giovanna Tropea Garzia and Thibaud Martin
Insects 2015, 6(3), 608-625; https://doi.org/10.3390/insects6030608 - 26 Jun 2015
Cited by 37 | Viewed by 11264
Abstract
Megalurothrips sjostedti Trybom is an important pest of cowpea (Vigna unguiculata L.) in Africa. To propose an alternative to chemical control, the repellency of 24 plant extracts was evaluated against adult female thrips of M. sjostedti in the laboratory. Plant extracts in [...] Read more.
Megalurothrips sjostedti Trybom is an important pest of cowpea (Vigna unguiculata L.) in Africa. To propose an alternative to chemical control, the repellency of 24 plant extracts was evaluated against adult female thrips of M. sjostedti in the laboratory. Plant extracts in ethanol were separately applied on a filter paper disk in a still air visual cue olfactometer. The results showed highly significant differences in repellency among extract type, concentration and their interactions. We classified the level of repellency into four categories as strong, good, moderate and weak or non- repellent based on hierarchical ascendant classification. We identified Piper nigrum, Cinnamomum zeylanicum, Cinnamomum cassia as strong repellents. Five extracts were classified as good, eight as moderate and the remaining eight extracts were weak or non-repellent. Repellency of the extracts increased with the concentration suggesting that the behavioral response of M. sjostedti was dose-dependent. Mono- and sesquiterpene hydrocarbon compounds from seven highly repellent extracts were identified by gas chromatography-mass spectrometry (GC/MS). The use of repellent extracts could be useful in developing integrated pest management strategies for thrips on legume crops. In this regard, the specific modes of action of the identified compounds need to be investigated to incorporate them into the existing crop protection strategies. Full article
(This article belongs to the Special Issue Integrated Pest Management)
Show Figures

Figure 1

183 KiB  
Article
Development of a Microbial-Based Integrated Pest Management Program for Helicoverpa spp. (Lepidoptera: Noctuidae) and Beneficial Insects on Conventional Cotton Crops in Australia
by Robert K. Mensah, Alison Young and Leah Rood-England
Insects 2015, 6(2), 333-351; https://doi.org/10.3390/insects6020333 - 09 Apr 2015
Cited by 2 | Viewed by 5053
Abstract
Entomopathogenic fungi, when used as a microbial control agent against cotton pests, such as Helicoverpa spp., may have the potential to establish and spread in the environment and to have an impact on both pests and beneficial insects. Information on the effect of [...] Read more.
Entomopathogenic fungi, when used as a microbial control agent against cotton pests, such as Helicoverpa spp., may have the potential to establish and spread in the environment and to have an impact on both pests and beneficial insects. Information on the effect of entomopathogenic fungi on pests and beneficial insects is crucial for a product to be registered as a biopesticide. The effect of the entomopathogenic fungus BC 639 (Aspergillus sp.) against Helicoverpa spp. and beneficial insects (mostly predatory insects) was studied in the laboratory and in cotton field trials. The results show that when Helicoverpa spp. second instar larvae were exposed to increasing concentrations (from 102 to 109) of the entomopathogenic fungus BC 639, the optimum dose required to kill over 50% of the insects was 1.0 ´ 107 spores/mL. In the field trials, the number of Helicoverpa spp. per metre on plots treated with 1.0 or 0.50 L/ha of BC 639 was the same as on plots treated with the recommended rate of the commercial insecticide, Indoxacarb. However, when plots were treated with 0.25 L/ha of BC 639, this was not as effective at controlling Helicoverpa spp. as 1.0 or 0.5 L/ha BC 639 or Indoxacarb. BC 639 had less effect on predatory insects when applied at lower rates (0.50 and 0.25 L/ha) than at higher rates (1.0 L/ha). Thus, BC 639 was more selective against predators when applied at lower rates than at the higher rate, but was also more selective than Indoxacarb. Thus, the ability of BC 639 to control Helicoverpa spp. effectively with a minimal effect on predatory insects indicates its potential for enhancing integrated pest management programs and to sustain cotton production. Full article
(This article belongs to the Special Issue Integrated Pest Management)
Show Figures

Figure 1

130 KiB  
Article
Virulence of BotaniGard® to Second Instar Brown Marmorated Stink Bug, Halyomorpha halys (Stål) (Heteroptera: Pentatomidae)
by Bruce L. Parker, Margaret Skinner, Svetlana Gouli, Vladimir Gouli and Jae Su Kim
Insects 2015, 6(2), 319-324; https://doi.org/10.3390/insects6020319 - 09 Apr 2015
Cited by 16 | Viewed by 6765
Abstract
The brown marmorated stink bug, Halyomorpha halys (Stål) (BMSB) is an exotic invasive insect originating in East Asia, currently causing significant damage to fruits, vegetables and other crops throughout most of the Mid-Atlantic states of the U.S. It also is a nuisance pest, [...] Read more.
The brown marmorated stink bug, Halyomorpha halys (Stål) (BMSB) is an exotic invasive insect originating in East Asia, currently causing significant damage to fruits, vegetables and other crops throughout most of the Mid-Atlantic states of the U.S. It also is a nuisance pest, entering homes in the fall in search of suitable overwintering sites. Two formulations of BotaniGard® with a strain of Beauveria bassiana (GHA) as the active ingredient were tested against second instar BMSB. Both the wettable powder and the emulsifiable suspension formulations were efficacious at 1 × 107 conidia mL−1, causing 67%–80% mortality 9 days post treatment and 95%–100% after 12 days. The wettable powder formulation was slightly more efficacious. Full article
(This article belongs to the Special Issue Integrated Pest Management)
Show Figures

Figure 1

623 KiB  
Article
Optimizing Western Flower Thrips Management on French Beans by Combined Use of Beneficials and Imidacloprid
by Johnson O. Nyasani, Sevgan Subramanian, Hans-Michael Poehling, Nguya K. Maniania, Sunday Ekesi and Rainer Meyhöfer
Insects 2015, 6(1), 279-296; https://doi.org/10.3390/insects6010279 - 23 Mar 2015
Cited by 14 | Viewed by 6871
Abstract
Western flower thrips (WFT), Frankliniella occidentalis (Pergande), is an important pest of vegetable crops worldwide and has developed resistance to many insecticides. The predatory mites Neoseiulus (=Amblyseius) cucumeris (Oudemans), the entomopathogenic fungus Metarhizium anisopliae (Metsch.), and an insecticide (imidacloprid) were tested [...] Read more.
Western flower thrips (WFT), Frankliniella occidentalis (Pergande), is an important pest of vegetable crops worldwide and has developed resistance to many insecticides. The predatory mites Neoseiulus (=Amblyseius) cucumeris (Oudemans), the entomopathogenic fungus Metarhizium anisopliae (Metsch.), and an insecticide (imidacloprid) were tested for their efficacy to reduce WFT population density and damage to French bean (Phaseolus vulgaris L.) pods under field conditions in two planting periods. Metarhizium anisopliae was applied as a foliar spray weekly at a rate of one litre spray volume per plot while imidacloprid was applied as a soil drench every two weeks at a rate of two litres of a mixture of water and imidacloprid per m2. Neoseiulus cucumeris was released every two weeks on plant foliage at a rate of three mites per plant. Single and combined treatment applications reduced WFT population density by at least three times and WFT damage to French bean pods by at least 1.7 times compared with untreated plots. The benefit-cost ratios in management of WFT were profitable with highest returns realized on imidacloprid treated plots. The results indicate that M. anisopliae, N. cucumeris, and imidacloprid have the potential for use in developing an integrated pest management program against WFT on French beans. Full article
(This article belongs to the Special Issue Integrated Pest Management)
Show Figures

Graphical abstract

454 KiB  
Article
Field Study of the Comparative Efficacy of Three Pyrethroid/Neonicotinoid Mixture Products for the Control of the Common Bed Bug, Cimex lectularius
by Changlu Wang, Narinderpal Singh and Richard Cooper
Insects 2015, 6(1), 197-205; https://doi.org/10.3390/insects6010197 - 18 Mar 2015
Cited by 28 | Viewed by 6850
Abstract
Three insecticide mixtures that contain two classes of insecticides (pyrethroid and neonicotinoid) were recently developed to control bed bugs. We evaluated three integrated bed bug management strategies in apartments, each using the same non-chemical control methods and one of the three insecticide mixture [...] Read more.
Three insecticide mixtures that contain two classes of insecticides (pyrethroid and neonicotinoid) were recently developed to control bed bugs. We evaluated three integrated bed bug management strategies in apartments, each using the same non-chemical control methods and one of the three insecticide mixture products: Tandem (lambda-cyhalothrin + thiamethoxam), Temprid SC (beta-cyfluthrin + imidacloprid), and Transport Mikron (bifenthrin + acetamiprid). No insecticides were applied in the Control apartments. In all apartments, we installed vinyl mattress encasements (if not already present) and applied steam to beds and other infested upholstered furniture. Insecticide sprays were applied in the three treatments. Each treatment and the Control included 8–10 occupied apartments. Re-treatment was conducted during biweekly inspections if necessary. After eight weeks, the mean (± SEM) bed bug count reduction in the Tandem, Temprid SC, Transport Mikron, and Control was 89 ± 9, 87 ± 6, 98 ± 1, and 23 ± 54%, respectively. Only Tandem and Transport Mikron treatments resulted in significantly higher population reduction than the Control at eight weeks. There were no significant differences in mean percent reduction among the three treatments (Tandem, Temprid SC, Transport Mikron) at eight weeks. Tandem spray caused significantly faster bed bug reduction than Temprid SC spray and Transport Mikron spray. Full article
(This article belongs to the Special Issue Integrated Pest Management)
Show Figures

Figure 1

252 KiB  
Article
Integrated Pest Management for Sustainable Intensification of Agriculture in Asia and Africa
by Jules Pretty and Zareen Pervez Bharucha
Insects 2015, 6(1), 152-182; https://doi.org/10.3390/insects6010152 - 05 Mar 2015
Cited by 314 | Viewed by 49427
Abstract
Integrated Pest Management (IPM) is a leading complement and alternative to synthetic pesticides and a form of sustainable intensification with particular importance for tropical smallholders. Global pesticide use has grown over the past 20 years to 3.5 billion kg/year, amounting to a global [...] Read more.
Integrated Pest Management (IPM) is a leading complement and alternative to synthetic pesticides and a form of sustainable intensification with particular importance for tropical smallholders. Global pesticide use has grown over the past 20 years to 3.5 billion kg/year, amounting to a global market worth $45 billion. The external costs of pesticides are $4–$19 (€3–15) per kg of active ingredient applied, suggesting that IPM approaches that result in lower pesticide use will benefit, not only farmers, but also wider environments and human health. Evidence for IPM’s impacts on pesticide use and yields remains patchy. We contribute an evaluation using data from 85 IPM projects from 24 countries of Asia and Africa implemented over the past twenty years. Analysing outcomes on productivity and reliance on pesticides, we find a mean yield increase across projects and crops of 40.9% (SD 72.3), combined with a decline in pesticide use to 30.7% (SD 34.9) compared with baseline. A total of 35 of 115 (30%) crop combinations resulted in a transition to zero pesticide use. We assess successes in four types of IPM projects, and find that at least 50% of pesticide use is not needed in most agroecosystems. Nonetheless, policy support for IPM is relatively rare, counter-interventions from pesticide industry common, and the IPM challenge never done as pests, diseases and weeds evolve and move. Full article
(This article belongs to the Special Issue Integrated Pest Management)
Show Figures

Figure 1

160 KiB  
Article
Efficacies and Second-Year Effects of SPLAT GM™ and SPLAT GM™ Organic Formulations
by Ksenia S. Onufrieva, Andrea D. Hickman, Donna S. Leonard and Patrick C. Tobin
Insects 2015, 6(1), 1-12; https://doi.org/10.3390/insects6010001 - 23 Dec 2014
Cited by 4 | Viewed by 5676
Abstract
Mating disruption is the primary control tactic used against the gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae) under the gypsy moth Slow the Spread (STS) program. In this paper, we present the results of the multiyear study designed to evaluate a new liquid [...] Read more.
Mating disruption is the primary control tactic used against the gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae) under the gypsy moth Slow the Spread (STS) program. In this paper, we present the results of the multiyear study designed to evaluate a new liquid SPLAT GM™ (ISCA Tech, Riverside, CA, USA) Organic formulation, which is approved by the USDA to meet National Organic Program Standards for use in organic certified farms, for its ability to disrupt gypsy moth mating, and to evaluate the environmental persistence of SPLAT GM™ and SPLAT GM™ Organic formulations. Environmental persistence of the pheromone beyond the year of application is a significant concern since STS relies on trap catch data to evaluate treatment success. The study was conducted in 2007–2012 in forested areas in Virginia and Wisconsin, USA. We observed that SPLAT GM™ Organic reduced gypsy moth trap catch by ≥90% for 10 weeks in a similar manner as SPLAT GM™ and Hercon Disrupt® II (Hercon Environmental, Emigsville, PA, USA). Although we observed persistent effects in all products one year after application, the persistence observed in SPLAT GM™ and SPLAT GM™ Organic was significantly lower than that of Hercon Disrupt® II plastic laminated flakes. Full article
(This article belongs to the Special Issue Integrated Pest Management)
Show Figures

Figure 1

101 KiB  
Article
Influence of Rice Seeding Rate on Efficacies of Neonicotinoid and Anthranilic Diamide Seed Treatments against Rice Water Weevil
by Jason Hamm, Srinivas Lanka and Michael Stout
Insects 2014, 5(4), 961-973; https://doi.org/10.3390/insects5040961 - 01 Dec 2014
Cited by 11 | Viewed by 5564
Abstract
Rice in the U.S. is frequently seeded at low rates and treated before sowing with neonicotinoid or anthranilic diamide insecticides to target the rice water weevil. A previous study of the influence of seeding rate on rice water weevil densities showed an inverse [...] Read more.
Rice in the U.S. is frequently seeded at low rates and treated before sowing with neonicotinoid or anthranilic diamide insecticides to target the rice water weevil. A previous study of the influence of seeding rate on rice water weevil densities showed an inverse relationship between seeding rates and immature weevil densities. This study investigated interactive effects of seeding rate and seed treatment on weevil densities and rice yields; in particular, experiments were designed to determine whether seed treatments were less effective at low seeding rates. Four experiments were conducted over three years by varying seeding rates of rice treated at constant per seed rates of insecticide. Larval suppression by chlorantraniliprole was superior to thiamethoxam or clothianidin, and infestations at low seeding rates were up to 47% higher than at high seeding rates. Little evidence was found for the hypothesis that seed treatments are less effective at low seeding rates; in only one of four experiments was the reduction in weevil densities by thiamethoxam greater at high than at low seeding rates. However, suppression of larvae by neonicotinoid seed treatments in plots seeded at low rates was generally poor, and caution must be exercised when using the neonicotioids at low seeding rates. Full article
(This article belongs to the Special Issue Integrated Pest Management)
Show Figures

Figure 1

3173 KiB  
Article
Evolution and Structural Analyses of Glossina morsitans (Diptera; Glossinidae) Tetraspanins
by Edwin K. Murungi, Henry M. Kariithi, Vincent Adunga, Meshack Obonyo and Alan Christoffels
Insects 2014, 5(4), 885-908; https://doi.org/10.3390/insects5040885 - 12 Nov 2014
Cited by 29 | Viewed by 6629
Abstract
Tetraspanins are important conserved integral membrane proteins expressed in many organisms. Although there is limited knowledge about the full repertoire, evolution and structural characteristics of individual members in various organisms, data obtained so far show that tetraspanins play major roles in membrane biology, [...] Read more.
Tetraspanins are important conserved integral membrane proteins expressed in many organisms. Although there is limited knowledge about the full repertoire, evolution and structural characteristics of individual members in various organisms, data obtained so far show that tetraspanins play major roles in membrane biology, visual processing, memory, olfactory signal processing, and mechanosensory antennal inputs. Thus, these proteins are potential targets for control of insect pests. Here, we report that the genome of the tsetse fly, Glossina morsitans (Diptera: Glossinidae) encodes at least seventeen tetraspanins (GmTsps), all containing the signature features found in the tetraspanin superfamily members. Whereas six of the GmTsps have been previously reported, eleven could be classified as novel because their amino acid sequences do not map to characterized tetraspanins in the available protein data bases. We present a model of the GmTsps by using GmTsp42Ed, whose presence and expression has been recently detected by transcriptomics and proteomics analyses of G. morsitans. Phylogenetically, the identified GmTsps segregate into three major clusters. Structurally, the GmTsps are largely similar to vertebrate tetraspanins. In view of the exploitation of tetraspanins by organisms for survival, these proteins could be targeted using specific antibodies, recombinant large extracellular loop (LEL) domains, small-molecule mimetics and siRNAs as potential novel and efficacious putative targets to combat African trypanosomiasis by killing the tsetse fly vector. Full article
(This article belongs to the Special Issue Integrated Pest Management)
Show Figures

Graphical abstract

117 KiB  
Article
Densities of Eggs and Nymphs and Percent Parasitism of Bemisia tabaci (Hemiptera: Aleyrodidae) on Common Weeds in West Central Florida
by Hugh A. Smith, Curtis A. Nagle and Gregory A. Evans
Insects 2014, 5(4), 860-876; https://doi.org/10.3390/insects5040860 - 10 Nov 2014
Cited by 36 | Viewed by 4805
Abstract
The density of eggs and nymphs of Bemisia tabaci (Gennadius) biotype B and the percent parasitism of the nymphs were measured from specimens collected on nine species of weeds, commonly found in west central Florida during the spring and summer of 2012 and [...] Read more.
The density of eggs and nymphs of Bemisia tabaci (Gennadius) biotype B and the percent parasitism of the nymphs were measured from specimens collected on nine species of weeds, commonly found in west central Florida during the spring and summer of 2012 and 2013. The weeds were direct seeded in 2012 and grown as transplants in 2013 for Randomized Complete Block design experiments. The leaf area of each whole-plant sample was measured and the B. tabaci density parameters were converted to numbers per 100 cm2. In June and July, 2013, whole-plant samples became too large to examine entirely, thus a representative portion of a plant totaling about 1000 cm2 was sampled. Egg and nymph densities and percent parasitism varied greatly among weed species, and were higher overall in 2012 than in 2013. The highest densities of eggs and nymphs were measured on Abutilon theophrasti, Cassia obtusifolia and Emilia fosbergii each year. Lower densities of immature B. tabaci were measured on most dates for Amaranthus retroflexus, Bidens alba, Ipomoea lacunosa, Sesbania exaltata and Sida acuta. Nymph to egg ratios of 1:4 were observed on A. theophrasti and S. exaltata in 2012, while less than one nymph per ten eggs was observed overall on A. retroflexus, E. fosbergii and I. lacunosa. In 2012, parasitism rates of 32.3% were measured for B. alba, 23.4% for C. obtusifolia and 17.5% for S. acuta. Of the 206 parasitoids reared out over two seasons, 96.6% were Encarsia spp. and the remainder Eretmocerus spp. The role of weeds in managing B. tabaci is discussed. Full article
(This article belongs to the Special Issue Integrated Pest Management)
543 KiB  
Article
Rational Practices to Manage Boll Weevils Colonization and Population Growth on Family Farms in the Semiárido Region of Brazil
by Robério C. S. Neves, Felipe Colares, Jorge B. Torres, Roberta L. Santos and Cristina S. Bastos
Insects 2014, 5(4), 818-831; https://doi.org/10.3390/insects5040818 - 31 Oct 2014
Cited by 20 | Viewed by 5712
Abstract
Because boll weevil, Anthonomus grandis Boh. develops partially protected inside cotton fruiting structures, once they become established in a field, they are difficult to control, even with nearly continuous insecticide spray. During two cotton-growing seasons in the Semiárido region of Pernambuco State, Brazil, [...] Read more.
Because boll weevil, Anthonomus grandis Boh. develops partially protected inside cotton fruiting structures, once they become established in a field, they are difficult to control, even with nearly continuous insecticide spray. During two cotton-growing seasons in the Semiárido region of Pernambuco State, Brazil, we tested the use of kaolin sprays to disrupt plant colonization through visual cue interference, combined with removal of fallen fruiting bodies to restrain boll weevil population growth after colonization. Kaolin spray under non-choice trials resulted in 2.2×, 4.4×, and 8.6× fewer weevils, oviposition and feeding punctures on kaolin-treated plants, respectively, despite demonstrating no statistical differences for colonization and population growth. Early season sprays in 2010 occurred during a period of rainfall, and hence, under our fixed spraying schedule no significant differences in boll weevil colonization were detected. In 2011, when kaolin sprays were not washed out by rain, delayed boll weevil colonization and reduction on attacked fruiting bodies were observed in eight out of 12 evaluations, and kaolin-treated plots had 2.7× fewer damaged fruiting bodies compared to untreated plots. Adoption of simple measures such as removal of fallen fruiting bodies and prompt reapplication of kaolin sprays after rainfall show promise in reducing boll weevil infestation. Full article
(This article belongs to the Special Issue Integrated Pest Management)
Show Figures

Graphical abstract

Review

Jump to: Research, Other

890 KiB  
Review
The Biology and Control of the Greater Wax Moth, Galleria mellonella
by Charles A. Kwadha, George O. Ong’amo, Paul N. Ndegwa, Suresh K. Raina and Ayuka T. Fombong
Insects 2017, 8(2), 61; https://doi.org/10.3390/insects8020061 - 09 Jun 2017
Cited by 159 | Viewed by 23746
Abstract
The greater wax moth, Galleria mellonella Linnaeus, is a ubiquitous pest of the honeybee, Apis mellifera Linnaeus, and Apis cerana Fabricius. The greater wax moth larvae burrow into the edge of unsealed cells with pollen, bee brood, and honey through to [...] Read more.
The greater wax moth, Galleria mellonella Linnaeus, is a ubiquitous pest of the honeybee, Apis mellifera Linnaeus, and Apis cerana Fabricius. The greater wax moth larvae burrow into the edge of unsealed cells with pollen, bee brood, and honey through to the midrib of honeybee comb. Burrowing larvae leave behind masses of webs which causes galleriasis and later absconding of colonies. The damage caused by G. mellonella larvae is severe in tropical and sub-tropical regions, and is believed to be one of the contributing factors to the decline in both feral and wild honeybee populations. Previously, the pest was considered a nuisance in honeybee colonies, therefore, most studies have focused on the pest as a model for in vivo studies of toxicology and pathogenicity. It is currently widespread, especially in Africa, and the potential of transmitting honeybee viruses has raised legitimate concern, thus, there is need for more studies to find sustainable integrated management strategies. However, our knowledge of this pest is limited. This review provides an overview of the current knowledge on the biology, distribution, economic damage, and management options. In addition, we provide prospects that need consideration for better understanding and management of the pest. Full article
(This article belongs to the Special Issue Integrated Pest Management)
Show Figures

Figure 1

372 KiB  
Review
Integrated Fruit Production and Pest Management in Europe: The Apple Case Study and How Far We Are From the Original Concept?
by Petros Damos, Lucía-Adriana Escudero Colomar and Claudio Ioriatti
Insects 2015, 6(3), 626-657; https://doi.org/10.3390/insects6030626 - 26 Jun 2015
Cited by 71 | Viewed by 13472
Abstract
This review focuses on the process of adapting the original concept of Integrated Pest Management (IPM) to the wider conception of the Integrated Fruit Production (IFP) implemented in Europe. Even though most of the pest management strategies still rely on the use of [...] Read more.
This review focuses on the process of adapting the original concept of Integrated Pest Management (IPM) to the wider conception of the Integrated Fruit Production (IFP) implemented in Europe. Even though most of the pest management strategies still rely on the use of synthetic pesticides, a wide array of innovative and environmentally friendly tools are now available as possible alternative to the pesticides within the modern apple production system. We also highlight how recent pest management strategies and tools have created an opening for research towards IPM improvement, including the use of biorational pesticides, semiochemicals and biological control. Forecasting models, new tree training systems and innovative spray equipment have also been developed to improve treatment coverage, to mitigate pesticide drift and to reduce chemical residues on fruits. The possible threats that jeopardize the effective implementation of IPM and particularly the risks related to the development of the pesticide resistance and the introduction of new invasive pests are also reviewed. With the directive 128/09, the European legislation recognizes IPM as a strategic approach for the sustainable use of pesticides. Within this context, IPM and related guidelines is called to meet different areas of concern in relation to the worker and bystander safety. Beside the traditional economic criteria of the market-oriented agriculture, sustainable agriculture includes the assessment of the environmental impact of the agronomic practices within the societal context where they take place. As a consequence of the raising consumer concerns about environmental impacts generated by the fruit production, IFP certification over product standards, including process aspects, are frequently required by consumers and supermarket chains. Full article
(This article belongs to the Special Issue Integrated Pest Management)
Show Figures

Graphical abstract

105 KiB  
Review
Insect Pests and Integrated Pest Management in Museums, Libraries and Historic Buildings
by Pascal Querner
Insects 2015, 6(2), 595-607; https://doi.org/10.3390/insects6020595 - 16 Jun 2015
Cited by 67 | Viewed by 10676
Abstract
Insect pests are responsible for substantial damage to museum objects, historic books and in buildings like palaces or historic houses. Different wood boring beetles (Anobium punctatum, Hylotrupes bajulus, Lyctus sp. or introduced species), the biscuit beetle (Stegobium paniceum), [...] Read more.
Insect pests are responsible for substantial damage to museum objects, historic books and in buildings like palaces or historic houses. Different wood boring beetles (Anobium punctatum, Hylotrupes bajulus, Lyctus sp. or introduced species), the biscuit beetle (Stegobium paniceum), the cigarette beetle (Lasioderma serricorne), different Dermestides (Attagenus sp., Anthrenus sp., Dermestes sp., Trogoderma sp.), moths like the webbing clothes moth (Tineola bisselliella), Silverfish (Lepisma saccharina) and booklice (Psocoptera) can damage materials, objects or building parts. They are the most common pests found in collections in central Europe, but most of them are distributed all over the world. In tropical countries, termites, cockroaches and other insect pests are also found and result in even higher damage of wood and paper or are a commune annoyance in buildings. In this short review, an introduction to Integrated Pest Management (IPM) in museums is given, the most valuable collections, preventive measures, monitoring in museums, staff responsible for the IPM and chemical free treatment methods are described. In the second part of the paper, the most important insect pests occurring in museums, archives, libraries and historic buildings in central Europe are discussed with a description of the materials and object types that are mostly infested and damaged. Some information on their phenology and biology are highlighted as they can be used in the IPM concept against them. Full article
(This article belongs to the Special Issue Integrated Pest Management)
211 KiB  
Review
Insect Pathogenic Bacteria in Integrated Pest Management
by Luca Ruiu
Insects 2015, 6(2), 352-367; https://doi.org/10.3390/insects6020352 - 14 Apr 2015
Cited by 108 | Viewed by 14452
Abstract
The scientific community working in the field of insect pathology is experiencing an increasing academic and industrial interest in the discovery and development of new bioinsecticides as environmentally friendly pest control tools to be integrated, in combination or rotation, with chemicals in pest [...] Read more.
The scientific community working in the field of insect pathology is experiencing an increasing academic and industrial interest in the discovery and development of new bioinsecticides as environmentally friendly pest control tools to be integrated, in combination or rotation, with chemicals in pest management programs. In this scientific context, market data report a significant growth of the biopesticide segment. Acquisition of new technologies by multinational Ag-tech companies is the center of the present industrial environment. This trend is in line with the requirements of new regulations on Integrated Pest Management. After a few decades of research on microbial pest management dominated by Bacillus thuringiensis (Bt), novel bacterial species with innovative modes of action are being discovered and developed into new products. Significant cases include the entomopathogenic nematode symbionts Photorhabdus spp. and Xenorhabdus spp., Serratia species, Yersinia entomophaga, Pseudomonas entomophila, and the recently discovered Betaproteobacteria species Burkholderia spp. and Chromobacterium spp. Lastly, Actinobacteria species like Streptomyces spp. and Saccharopolyspora spp. have gained high commercial interest for the production of a variety of metabolites acting as potent insecticides. With the aim to give a timely picture of the cutting-edge advancements in this renewed research field, different representative cases are reported and discussed. Full article
(This article belongs to the Special Issue Integrated Pest Management)
Show Figures

Graphical abstract

2500 KiB  
Review
An Overview of Pest Species of Bactrocera Fruit Flies (Diptera: Tephritidae) and the Integration of Biopesticides with Other Biological Approaches for Their Management with a Focus on the Pacific Region
by Roger I. Vargas, Jaime C. Piñero and Luc Leblanc
Insects 2015, 6(2), 297-318; https://doi.org/10.3390/insects6020297 - 03 Apr 2015
Cited by 226 | Viewed by 17687
Abstract
Fruit flies (Diptera: Tephritidae) are among the most economically important pest species in the world, attacking a wide range of fruits and fleshy vegetables throughout tropical and sub-tropical areas. These species are such devastating crop pests that major control and [...] Read more.
Fruit flies (Diptera: Tephritidae) are among the most economically important pest species in the world, attacking a wide range of fruits and fleshy vegetables throughout tropical and sub-tropical areas. These species are such devastating crop pests that major control and eradication programs have been developed in various parts of the world to combat them. The array of control methods includes insecticide sprays to foliage and soil, bait-sprays, male annihilation techniques, releases of sterilized flies and parasitoids, and cultural controls. During the twenty first century there has been a trend to move away from control with organophosphate insecticides (e.g., malathion, diazinon, and naled) and towards reduced risk insecticide treatments. In this article we present an overview of 73 pest species in the genus Bactrocera, examine recent developments of reduced risk technologies for their control and explore Integrated Pest Management (IPM) Programs that integrate multiple components to manage these pests in tropical and sub-tropical areas. Full article
(This article belongs to the Special Issue Integrated Pest Management)
Show Figures

Figure 1

474 KiB  
Review
Aggression in Tephritidae Flies: Where, When, Why? Future Directions for Research in Integrated Pest Management
by Giovanni Benelli
Insects 2015, 6(1), 38-53; https://doi.org/10.3390/insects6010038 - 30 Dec 2014
Cited by 27 | Viewed by 9271
Abstract
True fruit flies (Diptera: Tephritidae) include over 4000 species, many of which constitute enormous threats to fruit and vegetable production worldwide. A number of Tephritidae are lekking species, forming aggregations in which males fight to defend a small territory where they court females [...] Read more.
True fruit flies (Diptera: Tephritidae) include over 4000 species, many of which constitute enormous threats to fruit and vegetable production worldwide. A number of Tephritidae are lekking species, forming aggregations in which males fight to defend a small territory where they court females and mate. Male-male contests also occur in non-lekking species, characterized by resource defense polygyny. Tephritidae females display agonistic behavior to maintain single oviposition sites and reduce larval competition for food. Here, how, where, when and why aggressive interactions occur in Tephritidae flies is reviewed. A number of neglected issues deserving further research are highlighted, with a special focus on diel periodicity of aggression, cues evoking aggressive behavior, the role of previous experience on fighting success and the evolution of behavioral lateralization of aggressive displays. In the final section, future directions to exploit this knowledge in Integrated Pest Management, with particular emphasis on enhancement of Sterile Insect Technique and interspecific competitive displacement in the field are suggested. Full article
(This article belongs to the Special Issue Integrated Pest Management)
Show Figures

Graphical abstract

133 KiB  
Review
Classical Biological Control of Invasive Legacy Crop Pests: New Technologies Offer Opportunities to Revisit Old Pest Problems in Perennial Tree Crops
by Mark S. Hoddle, Keith Warner, John Steggall and Karen M. Jetter
Insects 2015, 6(1), 13-37; https://doi.org/10.3390/insects6010013 - 23 Dec 2014
Cited by 18 | Viewed by 8444
Abstract
Advances in scientific disciplines that support classical biological control have provided “new tools” that could have important applications for biocontrol programs for some long-established invasive arthropod pests. We suggest that these previously unavailable tools should be used in biological control programs targeting “legacy [...] Read more.
Advances in scientific disciplines that support classical biological control have provided “new tools” that could have important applications for biocontrol programs for some long-established invasive arthropod pests. We suggest that these previously unavailable tools should be used in biological control programs targeting “legacy pests”, even if they have been targets of previously unsuccessful biocontrol projects. Examples of “new tools” include molecular analyses to verify species identities and likely geographic area of origin, climate matching and ecological niche modeling, preservation of natural enemy genetic diversity in quarantine, the use of theory from invasion biology to maximize establishment likelihoods for natural enemies, and improved understanding of the interactions between natural enemy and target pest microbiomes. This review suggests that opportunities exist for revisiting old pest problems and funding research programs using “new tools” for developing biological control programs for “legacy pests” could provide permanent suppression of some seemingly intractable pest problems. As a case study, we use citricola scale, Coccus pseudomagnoliarum, an invasive legacy pest of California citrus, to demonstrate the potential of new tools to support a new classical biological control program targeting this insect. Full article
(This article belongs to the Special Issue Integrated Pest Management)

Other

Jump to: Research, Review

178 KiB  
Case Report
The Rise and Demise of Integrated Pest Management in Rice in Indonesia
by Craig Thorburn
Insects 2015, 6(2), 381-408; https://doi.org/10.3390/insects6020381 - 17 Apr 2015
Cited by 44 | Viewed by 9597
Abstract
Indonesia’s 11-year (1989–1999) National Integrated Pest Management Program was a spectacularly successful example of wide-scale adoption of integrated pest management (IPM) principles and practice in a developing country. This program introduced the innovative Farmer Field School model of agro-ecosystem-based experiential learning, subsequently adapted [...] Read more.
Indonesia’s 11-year (1989–1999) National Integrated Pest Management Program was a spectacularly successful example of wide-scale adoption of integrated pest management (IPM) principles and practice in a developing country. This program introduced the innovative Farmer Field School model of agro-ecosystem-based experiential learning, subsequently adapted to different crops and agricultural systems in countries throughout the world. Since the termination of the program in 1999, Indonesia has undergone profound changes as the country enters a new era of democratic reform. Government support for the national IPM program has wavered during this period, and pesticide producers and traders have taken advantage of the policy vacuum to mount an aggressive marketing campaign in the countryside. These factors have contributed to a reappearance of the pesticide-induced resurgent pest problems that led to the establishment of the National IPM Program in the first place. Full article
(This article belongs to the Special Issue Integrated Pest Management)
Back to TopTop