Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = xenon difluoride (XeF2) etching

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3877 KiB  
Article
Batch Fabrication of Microelectrode Arrays with Glassy Carbon Microelectrodes and Interconnections for Neurochemical Sensing: Promises and Challenges
by Emma-Bernadette A. Faul, Austin M. Broussard, Daniel R. Rivera, May Yoon Pwint, Bingchen Wu, Qun Cao, Davis Bailey, X. Tracy Cui and Elisa Castagnola
Micromachines 2024, 15(2), 277; https://doi.org/10.3390/mi15020277 - 15 Feb 2024
Cited by 4 | Viewed by 2949
Abstract
Flexible multielectrode arrays with glassy carbon (GC) electrodes and metal interconnection (hybrid MEAs) have shown promising performance in multi-channel neurochemical sensing. A primary challenge faced by hybrid MEAs fabrication is the adhesion of the metal traces with the GC electrodes, as prolonged [...] Read more.
Flexible multielectrode arrays with glassy carbon (GC) electrodes and metal interconnection (hybrid MEAs) have shown promising performance in multi-channel neurochemical sensing. A primary challenge faced by hybrid MEAs fabrication is the adhesion of the metal traces with the GC electrodes, as prolonged electrical and mechanical stimulation can lead to adhesion failure. Previous devices with GC electrodes and interconnects made of a homogeneous material (all GC) demonstrated exceptional electrochemical stability but required miniaturization for enhanced tissue integration and chronic electrochemical sensing. In this study, we used two different methods for the fabrication of all GC-MEAs on thin flexible substrates with miniaturized features. The first method, like that previously reported, involves a double pattern-transfer photolithographic process, including transfer-bonding on temporary polymeric support. The second method requires a double-etching process, which uses a 2 µm-thick low stress silicon nitride coating of the Si wafer as the bottom insulator layer for the MEAs, bypassing the pattern-transfer and demonstrating a novel technique with potential advantages. We confirmed the feasibility of the two fabrication processes by verifying the practical conductivity of 3 µm-wide 2 µm-thick GC traces, the GC microelectrode functionality, and their sensing capability for the detection of serotonin using fast scan cyclic voltammetry. Through the exchange and discussion of insights regarding the strengths and limitations of these microfabrication methods, our goal is to propel the advancement of GC-based MEAs for the next generation of neural interface devices. Full article
(This article belongs to the Special Issue Biosensors for Biomedical and Environmental Applications, Volume 2)
Show Figures

Figure 1

9 pages, 2727 KiB  
Article
GaN Micromechanical Resonators with Meshed Metal Bottom Electrode
by Azadeh Ansari, Che-Yu Liu, Chien-Chung Lin, Hao-Chung Kuo, Pei-Cheng Ku and Mina Rais-Zadeh
Materials 2015, 8(3), 1204-1212; https://doi.org/10.3390/ma8031204 - 17 Mar 2015
Cited by 2 | Viewed by 9188
Abstract
This work describes a novel architecture to realize high-performance gallium nitride (GaN) bulk acoustic wave (BAW) resonators. The method is based on the growth of a thick GaN layer on a metal electrode grid. The fabrication process starts with the growth of a [...] Read more.
This work describes a novel architecture to realize high-performance gallium nitride (GaN) bulk acoustic wave (BAW) resonators. The method is based on the growth of a thick GaN layer on a metal electrode grid. The fabrication process starts with the growth of a thin GaN buffer layer on a Si (111) substrate. The GaN buffer layer is patterned and trenches are made and refilled with sputtered tungsten (W)/silicon dioxide (SiO2) forming passivated metal electrode grids. GaN is then regrown, nucleating from the exposed GaN seed layer and coalescing to form a thick GaN device layer. A metal electrode can be deposited and patterned on top of the GaN layer. This method enables vertical piezoelectric actuation of the GaN layer using its largest piezoelectric coefficient (d33) for thickness-mode resonance. Having a bottom electrode also results in a higher coupling coefficient, useful for the implementation of acoustic filters. Growth of GaN on Si enables releasing the device from the frontside using isotropic xenon difluoride (XeF2) etch and therefore eliminating the need for backside lithography and etching. Full article
(This article belongs to the Special Issue Compound Semiconductor Materials 2014)
Show Figures

Graphical abstract

Back to TopTop