Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = wetted surface area (WSA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2456 KiB  
Article
Flux of the Wetted Surface Area on Ships’ Hulls in Major Ports of Korea
by Jin-Yong Lee, Chang-Rae Lee, Bong-Gil Hyun and Keun-Hyung Choi
J. Mar. Sci. Eng. 2023, 11(6), 1129; https://doi.org/10.3390/jmse11061129 - 27 May 2023
Cited by 1 | Viewed by 2641
Abstract
Biofouling is a significant means for introducing non-indigenous marine species internationally, which can alter habitats and disturb marine ecosystems. This study estimated the flux of ships’ wetted surface area (WSA) to Korea in 2020 to assess the risks of biological invasion via biofouling [...] Read more.
Biofouling is a significant means for introducing non-indigenous marine species internationally, which can alter habitats and disturb marine ecosystems. This study estimated the flux of ships’ wetted surface area (WSA) to Korea in 2020 to assess the risks of biological invasion via biofouling on ships’ hulls. The annual total WSA flux entering Korea was estimated to be 418.26 km2, with short-stay vessels (<3 weeks) contributing to 99.7% of the total WSA flux. Busan and Ulsan ports were identified as the main sources of high-risk flux, with container ships being a major vector in Busan and tankers in Ulsan. Gwangyang port had the third-highest total WSA flux, with nearly half of the flux driven from coastwise voyages, making it particularly vulnerable to the spread of hull fouling organisms. These findings could help enhance the management and inspection of hull fouling organisms in Korea. Full article
Show Figures

Figure 1

13 pages, 3140 KiB  
Article
Spatial Contribution of Environmental Factors to Soil Aggregate Stability in a Small Catchment of the Loess Plateau, China
by Luping Ye, Lingling Ji, Hongfeng Chen, Xueye Chen and Wenfeng Tan
Agronomy 2022, 12(10), 2557; https://doi.org/10.3390/agronomy12102557 - 19 Oct 2022
Cited by 8 | Viewed by 2006
Abstract
Soil aggregate stability and erodibility are the influential factors governing soil resistance to water erosion. The interactions among aggregate stability, erodibility, and their influencing factors have not been fully explored. We collected soil samples from 0–10 cm and 10–20 cm layers in the [...] Read more.
Soil aggregate stability and erodibility are the influential factors governing soil resistance to water erosion. The interactions among aggregate stability, erodibility, and their influencing factors have not been fully explored. We collected soil samples from 0–10 cm and 10–20 cm layers in the Zhifanggou watershed. Then, the major contributors to aggregate stability and erodibility and how soil properties, environmental factors and land use contributed to them were explored by using partial least-squares regression and path analysis, respectively. The results showed that the major contributors included the slope, soil organic carbon (SOC), elevation, the percentage of landscape area of farmland (PLAND_F) and grassland (PLAND_G), the land surface temperature difference between seasons (ΔLST), topographic wetness index (TWI), pH, amorphous iron (poorly ordered forms of iron, Feo), and calcium carbonate (CaCO3). In which, the slope, SOC, and elevation were the most important contributors to the mean weight diameter (MWD) and the percentage of water-stable aggregates greater than 0.25 mm (WSA>0.25) and had a direct contribution to MWD, WSA>0.25, and K factors. The PLAND_F and PLAND_G had a significant and indirect contribution to those three indices by affecting slope. Meanwhile, the effects of pH, Feo, and CaCO3 on WSA>0.25 should also not be underestimated. For MWD and WSA>0.25, there was a significantly higher effect of the land use types and composition than hydrothermal conditions. For K factors, PLAND’s contribution was still higher than ΔLST and TWI, but they were all significant. The other soil properties, including pH, CaCO3, and Feo, indirectly affected them by influencing SOC. However, the direct contributions of soil properties increased as the soil layer deepened. Full article
(This article belongs to the Special Issue Soil Sustainability in the Anthropocene)
Show Figures

Figure 1

17 pages, 7697 KiB  
Article
A Numerical Study of Spray Strips Analysis on Fridsma Hull Form
by Samuel, Andi Trimulyono, Parlindungan Manik and Deddy Chrismianto
Fluids 2021, 6(11), 420; https://doi.org/10.3390/fluids6110420 - 22 Nov 2021
Cited by 19 | Viewed by 3578
Abstract
Spray strips are deflectors added to the hull to reduce the Wetted Surface Area (WSA). The reduced WSA will decrease the total ship drag caused by the deflection of the spray strip installation. The research aimed to predict the function of the spray [...] Read more.
Spray strips are deflectors added to the hull to reduce the Wetted Surface Area (WSA). The reduced WSA will decrease the total ship drag caused by the deflection of the spray strip installation. The research aimed to predict the function of the spray strip to improve ship performance using Computational Fluid Dynamics (CFD). The numerical approach in this study used the Finite Volume Method (FVM) with the RANS (Reynolds-averaged Navier–Stokes) equation to solve fluid dynamics problems. VOF (Volume of Fluid) was used to model the water and air phases. The results of this study indicated that the number of spray strips would have a significant effect compared to without using a spray strip. Spray strips with three strips could reduce the total resistance by 4.9% at Fr 1.78. Spray strips would increase the total resistance value by 2.1% at low speeds. Spray strips were effective for reducing total resistance at Fr > 1 or the planing mode conditions. The total resistance prediction used three suggestion profiles with the best performance to reduce total resistance by 6.0% at Fr 1.78. Full article
(This article belongs to the Special Issue Numerical Simulations of Spray Processes)
Show Figures

Figure 1

20 pages, 10885 KiB  
Article
A Stereolithographic Model-Based Dense Body Plan Generation Method to Construct a Ship Hydrodynamic Coefficients Database
by Qianfeng Jing, Helong Shen and Yong Yin
J. Mar. Sci. Eng. 2020, 8(3), 222; https://doi.org/10.3390/jmse8030222 - 21 Mar 2020
Cited by 3 | Viewed by 5119
Abstract
A ship’s body plan is a vital data resource of ship hydrodynamics analysis, especially for time-domain simulations. Motivated by 3D printing technology, a novel dense body plan generation method is developed in this study. The slicing algorithm is adopted to generate dense 2D [...] Read more.
A ship’s body plan is a vital data resource of ship hydrodynamics analysis, especially for time-domain simulations. Motivated by 3D printing technology, a novel dense body plan generation method is developed in this study. The slicing algorithm is adopted to generate dense 2D body plans from ship stereolithographic models. The dense body plan can be produced automatically under arbitrary rotational angles and slices. Moreover, a section redistribution algorithm is integrated to eliminate the non-uniform distribution features in sliced data inherited from the stereolithographic models. The benchmark ship models are selected to validate the accuracy of the method. The hull volumes of three ship models are calculated based on the produced data. The calculated results show satisfactory agreement with the published values. Furthermore, the estimation formulas of wetted surface area (WSA) are reviewed and utilized for validation. The calculated WSAs by slice integration turn out to be adaptive and accurate. The time costs of different slices are provided to illustrate the computational efficiency. A ship hydrodynamic coefficients database is constructed based on a 2D strip method and the produced data. The proposed method aims to improve the generation process of the body plan, which could meet the accuracy requirements of the strip method. As a result, hydrodynamic coefficients utilized in time-domain simulations could be obtained smoothly from the database. Full article
(This article belongs to the Special Issue Computer-Aided Marine Structures’ Design)
Show Figures

Figure 1

Back to TopTop