Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = waste electric porcelain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 8406 KiB  
Article
Enhanced Mechanical and Thermal Properties of Waste Electric Porcelain-Based Solar Energy-Absorbing Thermal Storage Ceramics with Interwoven Mullite Structure
by Xuejia Zhang, Zhenfei Lv, Junchi Weng, Mengke Fan, Feiyu Fan, Xin Wang, Xuyi Chen, Siqi Shi and Xiulin Shen
Crystals 2025, 15(1), 90; https://doi.org/10.3390/cryst15010090 - 18 Jan 2025
Viewed by 1183
Abstract
This study addresses the environmental and resource challenges posed by the growing volume of waste electric porcelain in the power industry by developing solar absorption and thermal storage integrated ceramics (SATS ceramics) from waste electric porcelain. These SATS ceramics, which feature an exceptional [...] Read more.
This study addresses the environmental and resource challenges posed by the growing volume of waste electric porcelain in the power industry by developing solar absorption and thermal storage integrated ceramics (SATS ceramics) from waste electric porcelain. These SATS ceramics, which feature an exceptional mullite structure, were crafted through the optimization of the sintering process. Notably, when sintered at 1400 °C with an 11 wt.% magnetite content, the resulting material boasts an optimal short-clustered, ordered, and interwoven columnar mullite structure. This structure endows the material with a remarkable flexural strength of 96.05 MPa and a specific heat capacity of up to 0.6415 J/(g* °C) at 300 °C, significantly enhancing its thermal energy storage efficiency. This research offers innovative insights into the high-value utilization of waste electric porcelain and the development of solar thermal storage materials, underscoring its significant environmental and economic advantages. Full article
(This article belongs to the Special Issue Structure and Properties of Ceramic Materials)
Show Figures

Figure 1

13 pages, 2184 KiB  
Article
Low-Carbon Composite Based on MOC, Silica Sand and Ground Porcelain Insulator Waste
by Adam Pivák, Milena Pavlíková, Martina Záleská, Michal Lojka, Anna-Marie Lauermannová, Ondřej Jankovský and Zbyšek Pavlík
Processes 2020, 8(7), 829; https://doi.org/10.3390/pr8070829 - 13 Jul 2020
Cited by 22 | Viewed by 3246
Abstract
Magnesium oxychloride cement-based composites (MOC) with silica sand/porcelain waste blended fillers were designed and tested. The objective of the presented research was to design and test low carbon, eco-friendly and viable alternatives to Portland cement-based materials. To make new materials environmentally acceptable and [...] Read more.
Magnesium oxychloride cement-based composites (MOC) with silica sand/porcelain waste blended fillers were designed and tested. The objective of the presented research was to design and test low carbon, eco-friendly and viable alternatives to Portland cement-based materials. To make new materials environmentally acceptable and sustainable, silica sand applied in the reference composite material was partially substituted by ground porcelain waste (PW) coming from used electrical insulators. The sand substitution ratio was 5, 10, and 15 vol.%. The chemical and mineralogical composition, morphology, and particle size distribution of porcelain waste were measured. For silica sand, porcelain waste, and MgO, specific density, loose bulk density, and Blaine fineness were determined. The effect of porcelain waste on the workability of fresh composite mixtures was characterized by spread diameter. The composites were characterized by their basic structural, mechanical, hygric, and thermal properties. The phase composition and thermal stability at high temperatures of MOC/porcelain waste pastes were also analyzed. Fourier-transform infrared spectroscopy (FT-IR) analysis helped to indicate main compounds formed within the precipitation of MOC phases and their reaction with porcelain waste. The usage of porcelain waste greatly decreased the porosity of composite matrix, which resulted in high mechanical resistance and reduced and decelerated water imbibition. The 10% sand substitution with porcelain waste brought the best mechanical resistance and the lowest water absorption due to the formation of amorphous phases, water-insoluble aluminosilicates. In case of the thermal performance of the examined composites, the low thermal conductivity of porcelain waste was the contradictory parameter to porosity and the high thermal stability of the phases present in porcelain slightly decreased the thermal decomposition of composites with porcelain waste dosage. Based on the results emerged from the experimental tests it was concluded that the partial substitution of silica sand in MOC composites enabled the development of materials possessing interesting and advanced function and technical parameters. Full article
(This article belongs to the Special Issue Sustainable Development of Waste towards Green Growth)
Show Figures

Figure 1

Back to TopTop