Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline

Search Results (1)

Search Parameters:
Keywords = wale-wise stretching

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4291 KiB  
Article
Assessing the Role of Yarn Placement in Plated Knit Strain Sensors: A Detailed Study of Their Electromechanical Properties and Applicability in Bending Cycle Monitoring
by Youn-Hee Kim, Juwon Jun, You-Kyung Oh, Hee-Ji Choi, Mi-Jung Lee, Kyeong-Sik Min, Sung-Hyon Kim, Hyunseung Lee, Ho-Seok Nam, Son Singh, Byoung-Joon Kim and Jaegab Lee
Sensors 2024, 24(5), 1690; https://doi.org/10.3390/s24051690 - 6 Mar 2024
Cited by 2 | Viewed by 1998
Abstract
In this study, we explore how the strategic positioning of conductive yarns influences the performance of plated knit strain sensors fabricated using commercial knitting machines with both conductive and non-conductive yarns. Our study reveals that sensors with conductive yarns located at the rear, [...] Read more.
In this study, we explore how the strategic positioning of conductive yarns influences the performance of plated knit strain sensors fabricated using commercial knitting machines with both conductive and non-conductive yarns. Our study reveals that sensors with conductive yarns located at the rear, referred to as ‘purl plated sensors’, exhibit superior performance in comparison to those with conductive yarns at the front, or ‘knit plated sensors’. Specifically, purl plated sensors demonstrate a higher sensitivity, evidenced by a gauge factor ranging from 3 to 18, and a minimized strain delay, indicated by a 1% strain in their electromechanical response. To elucidate the mechanisms behind these observations, we developed an equivalent circuit model. This model examines the role of contact resistance within varying yarn configurations on the sensors’ sensitivity, highlighting the critical influence of contact resistance in conductive yarns subjected to wale-wise stretching on sensor responsiveness. Furthermore, our findings illustrate that the purl plated sensors benefit from the vertical movement of non-conductive yarns, which promotes enhanced contact between adjacent conductive yarns, thereby improving both the stability and sensitivity of the sensors. The practicality of these sensors is confirmed through bending cycle tests with an in situ monitoring system, showcasing the purl plated sensors’ exceptional reproducibility, with a standard deviation of 0.015 across 1000 cycles, and their superior sensitivity, making them ideal for wearable devices designed for real-time joint movement monitoring. This research highlights the critical importance of conductive yarn placement in sensor efficacy, providing valuable guidance for crafting advanced textile-based strain sensors. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

Back to TopTop