Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = vitamin D receptor small nucleotide polymorphisms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1784 KiB  
Systematic Review
Polymorphisms in VDR, CYP27B1, CYP2R1, GC and CYP24A1 Genes as Biomarkers of Survival in Non-Small Cell Lung Cancer: A Systematic Review
by Laura Elena Pineda-Lancheros, José María Gálvez-Navas, Susana Rojo-Tolosa, Cristina Membrive-Jiménez, María Isabel Valverde-Merino, Fernando Martínez-Martínez, Almudena Sánchez-Martín, MCarmen Ramírez-Tortosa, Cristina Pérez-Ramírez and Alberto Jiménez-Morales
Nutrients 2023, 15(6), 1525; https://doi.org/10.3390/nu15061525 - 21 Mar 2023
Cited by 13 | Viewed by 3964
Abstract
The objective of this systematic review was to provide a compilation of all the literature available on the association between single-nucleotide polymorphisms (SNPs) in the genes involved in the metabolic pathway of vitamin D and overall survival (OS) and progression-free survival (PFS) in [...] Read more.
The objective of this systematic review was to provide a compilation of all the literature available on the association between single-nucleotide polymorphisms (SNPs) in the genes involved in the metabolic pathway of vitamin D and overall survival (OS) and progression-free survival (PFS) in patients with non-small cell lung cancer (NSCLC). This systematic review was conducted in accordance with the PRISMA guidelines. It included all the literature published up to 1 November 2022 and was carried out in four databases (Medline [PubMed], Scopus, Web of Science, and Embase), using the PICO strategy, with relevant keywords related to the objective. The quality of the studies included was evaluated with an assessment tool derived from the Strengthening the Reporting of Genetic Association Studies (STREGA) statement. Six studies were included in this systematic review. Our findings showed that the BsmI (rs1544410), Cdx-2 (rs11568820), FokI (rs2228570), ApaI (rs7975232), TaqI (rs731236), rs4646536, rs6068816, rs7041, and rs10741657 SNPs in the genes that play a part in vitamin D synthesis (CYP2R1, CYP27B1), transport (GC), and metabolism (CYP24A1), as well as in the vitamin D receptor (VDR), are associated with OS and/or PFS in patients with NSCLC. The SNPs in VDR have been the most extensively analyzed. This systematic review summed up the available evidence concerning the association between 13 SNPs in the main genes involved in the vitamin D metabolic pathway and prognosis in NSCLC. It revealed that SNPs in the VDR, CYP27B1, CYP24A1, GC, and CYP2R1 genes could have an impact on survival in this disease. These findings suggest the identification of prognostic biomarkers in NSCLC patients. However, evidence remains sparse for each of the polymorphisms examined, so these findings should be treated with caution. Full article
(This article belongs to the Section Nutrigenetics and Nutrigenomics)
Show Figures

Graphical abstract

11 pages, 233 KiB  
Article
Association between Serum 25-Hydroxy-Vitamin D and Aggressive Prostate Cancer in African American Men
by Shakira M. Nelson, Ken Batai, Chiledum Ahaghotu, Tanya Agurs-Collins and Rick A. Kittles
Nutrients 2017, 9(1), 12; https://doi.org/10.3390/nu9010012 - 28 Dec 2016
Cited by 33 | Viewed by 6725
Abstract
African American men have higher incidence rates of aggressive prostate cancer, where high levels of calcium and serum vitamin D deficient levels play a role in the racial differences in incidence. In this study, we examined associations of serum vitamin D with aggressive [...] Read more.
African American men have higher incidence rates of aggressive prostate cancer, where high levels of calcium and serum vitamin D deficient levels play a role in the racial differences in incidence. In this study, we examined associations of serum vitamin D with aggressive prostate cancer to improve our understanding of higher susceptibility of aggressive disease in this racial cohort. From Howard University Hospital, 155 African American men with clinically-identified prostate cancer were identified; 46 aggressive cases, and 58 non-aggressive cases. Serum vitamin D was assessed from fasting blood samples, and total calcium intake was assessed using the Block Food Frequency Questionnaire. Vitamin D receptor polymorphisms from three different loci were genotyped; rs731236, rs1544410, and rs11568820. Multivariate logistic regression models were used to determine odds ratios (OR) and 95% confidence intervals (CI) comparing aggressive to non-aggressive prostate cancer. Vitamin D deficiency (<20 ng/mL) significantly increased risk of aggressive disease (OR: 3.1, 95% CI: 1.03–9.57, p-value = 0.04). Stratification by total calcium showed high calcium levels (≥800 mg/day) modified this association (OR: 7.3, 95% CI: 2.15–47.68, p-interaction = 0.03). Genetic variant rs11568820 appeared to increase the magnitude of association between deficient serum vitamin D and aggressive prostate cancer (OR: 3.64, 95% CI: 1.12–11.75, p-value = 0.05). These findings suggest that high incidence of aggressive prostate cancer risk in African American men may be due in-part to deficient levels of serum vitamin D. Other factors, including genetics, should be considered for future studies. Full article
20 pages, 646 KiB  
Article
Vitamin D-Related Gene Polymorphisms, Plasma 25-Hydroxy-Vitamin D, Cigarette Smoke and Non-Small Cell Lung Cancer (NSCLC) Risk
by Xiayu Wu, Jiaoni Cheng and Kaiyun Yang
Int. J. Mol. Sci. 2016, 17(10), 1597; https://doi.org/10.3390/ijms17101597 - 22 Sep 2016
Cited by 47 | Viewed by 6977
Abstract
Epidemiological studies regarding the relationship between vitamin D, genetic polymorphisms in the vitamin D metabolism, cigarette smoke and non-small cell lung cancer (NSCLC) risk have not been investigated comprehensively. To search for additional evidence, the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique [...] Read more.
Epidemiological studies regarding the relationship between vitamin D, genetic polymorphisms in the vitamin D metabolism, cigarette smoke and non-small cell lung cancer (NSCLC) risk have not been investigated comprehensively. To search for additional evidence, the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique and radioimmunoassay method were utilized to evaluate 5 single-nucleotide polymorphisms (SNPs) in vitamin D receptor (VDR), 6 SNPs in 24-hydroxylase (CYP24A1), 2 SNPs in 1α-hydroxylase (CYP27B1) and 2 SNPs in vitamin D-binding protein (group-specific component, GC) and plasma vitamin D levels in 426 NSCLC cases and 445 controls from China. Exposure to cigarette smoke was ascertained through questionnaire information. Multivariable linear regressions and mixed effects models were used in statistical analysis. The results showed that Reference SNP rs6068816 in CYP24A1, rs1544410 and rs731236 in VDR and rs7041 in GC were statistically significant in relation to reduction in NSCLC risk (p < 0.001–0.05). No significant connection was seen between NSCLC risk and overall plasma 25-hydroxyvitamin D [25(OH)D] concentrations, regardless of smoking status. However, the mutation genotype of CYP24A1 rs6068816 and VDR rs1544410 were also significantly associated with increased 25(OH)D levels only in both the smoker and non-smoker cases (p < 0.01–0.05). Meanwhile, smokers and non-smokers with mutated homozygous rs2181874 in CYP24A1 had significantly increased NSCLC risk (odds ratio (OR) = 2.14, 95% confidence interval (CI) 1.47–3.43; p = 0.031; OR = 3.57, 95% CI 2.66–4.74; p = 0.019, respectively). Smokers with mutated homozygous rs10735810 in VDR had significantly increased NSCLC risk (OR = 1.93, 95% CI 1.41–2.76; p = 0.015). However, smokers with mutated homozygous rs6068816 in CYP24A1 had significantly decreased NSCLC risk (OR = 0.43, 95% CI 0.27–1.02; p = 0.006); and smokers and non-smokers with mutated homozygous rs1544410 in VDR had significantly decreased NSCLC risk (OR = 0.51, 95% CI 0.34–1.17; p = 0.002; OR = 0.26, 95% CI 0.20–0.69; p = 0.001, respectively). There are significant joint effects between smoking and CYP24A1 rs2181874, CYP24A1 rs6068816, VDR rs10735810, and VDR rs1544410 (p < 0.01–0.05). Smokers with mutated homozygous rs10735810 in VDR had significantly increased NSCLC risk (OR = 1.93, 95% CI 1.41–2.76; p = 0.015). In summary, the results suggested that the lower the distribution of vitamin D concentration, the more the genetic variations in CYP24A1, VDR and GC genes may be associated with NSCLC risk. In addition, there are significant joint associations of cigarette smoking and vitamin D deficiency on NSCLC risk. Full article
(This article belongs to the Special Issue Nutrigenomics of Risk Factors for Disease)
Show Figures

Figure 1

Back to TopTop