Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline

Search Results (2)

Search Parameters:
Keywords = viro-SELEX

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5244 KiB  
Article
Ultra-Sensitive Aptamer-Based Diagnostic Systems for Rapid Detection of All SARS-CoV-2 Variants
by Sang Won Kim, Min Jung Han, Md Shafiqur Rahman, Heesun Kim, Jung Eun Noh, Myoung Kyu Lee, Meehyein Kim, Jie-Oh Lee and Sung Key Jang
Int. J. Mol. Sci. 2025, 26(2), 745; https://doi.org/10.3390/ijms26020745 - 16 Jan 2025
Viewed by 1653
Abstract
The emergence of numerous SARS-CoV-2 variants, characterized by mutations in the viral RNA genome and target proteins, has presented challenges for accurate COVID-19 diagnosis. To address this, we developed universal aptamer probes capable of binding to the spike proteins of SARS-CoV-2 variants, including [...] Read more.
The emergence of numerous SARS-CoV-2 variants, characterized by mutations in the viral RNA genome and target proteins, has presented challenges for accurate COVID-19 diagnosis. To address this, we developed universal aptamer probes capable of binding to the spike proteins of SARS-CoV-2 variants, including highly mutated strains like Omicron. These aptamers were identified through protein-based SELEX using spike proteins from three key variants (D614G-substituted Wuhan-Hu-1, Delta, and Omicron) and virus-based SELEX, known as viro-SELEX. Leveraging these universal aptamers, we created a highly sensitive lateral flow assay (LFA) and an ultra-sensitive molecular diagnostic platform that integrates a novel rapid PCR technique, enabling fast and reliable detection across all SARS-CoV-2 variants. Full article
Show Figures

Figure 1

21 pages, 2664 KiB  
Article
Structure-Guided Development of Bivalent Aptamers Blocking SARS-CoV-2 Infection
by Md Shafiqur Rahman, Min Jung Han, Sang Won Kim, Seong Mu Kang, Bo Ri Kim, Heesun Kim, Chang Jun Lee, Jung Eun Noh, Hanseong Kim, Jie-Oh Lee and Sung Key Jang
Molecules 2023, 28(12), 4645; https://doi.org/10.3390/molecules28124645 - 8 Jun 2023
Cited by 8 | Viewed by 3582
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused devastation to human society through its high virulence, infectivity, and genomic mutations, which reduced the efficacy of vaccines. Here, we report the development of aptamers that effectively interfere with SARS-CoV-2 infection by targeting its [...] Read more.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused devastation to human society through its high virulence, infectivity, and genomic mutations, which reduced the efficacy of vaccines. Here, we report the development of aptamers that effectively interfere with SARS-CoV-2 infection by targeting its spike protein, which plays a pivotal role in host cell entry of the virus through interaction with the viral receptor angiotensin-converting enzyme 2 (ACE2). To develop highly effective aptamers and to understand their mechanism in inhibiting viral infection, we determined the three-dimensional (3D) structures of aptamer/receptor-binding domain (RBD) complexes using cryogenic electron microscopy (cryo-EM). Moreover, we developed bivalent aptamers targeting two distinct regions of the RBD in the spike protein that directly interact with ACE2. One aptamer interferes with the binding of ACE2 by blocking the ACE2-binding site in RBD, and the other aptamer allosterically inhibits ACE2 by binding to a distinct face of RBD. Using the 3D structures of aptamer–RBD complexes, we minimized and optimized these aptamers. By combining the optimized aptamers, we developed a bivalent aptamer that showed a stronger inhibitory effect on virus infection than the component aptamers. This study confirms that the structure-based aptamer-design approach has a high potential in developing antiviral drugs against SARS-CoV-2 and other viruses. Full article
(This article belongs to the Special Issue Aptamer Generation and Bioapplication)
Show Figures

Graphical abstract

Back to TopTop