Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = vibratory feeder

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1184 KiB  
Article
Analysis of the Transport Capabilities of an Energy-Efficient Resonant Vibratory Conveyor of Classical Construction
by Piotr Czubak and Maciej Klemiato
Energies 2025, 18(10), 2500; https://doi.org/10.3390/en18102500 - 13 May 2025
Viewed by 282
Abstract
The paper analyzes the transport capabilities of energy-efficient resonant conveyors, with a particular emphasis on their dosing capabilities. They are driven by an additional mass—acting as a resonator—using a relatively small vibrator whose forcing power constitutes about 20% of the force that would [...] Read more.
The paper analyzes the transport capabilities of energy-efficient resonant conveyors, with a particular emphasis on their dosing capabilities. They are driven by an additional mass—acting as a resonator—using a relatively small vibrator whose forcing power constitutes about 20% of the force that would be needed to drive a similar conveyor of classical construction and the same transport capacity, resulting in lower energy demand. These conveyors have been present since the 1950s, but their widespread use occurred with the proliferation of cheap and easily controllable frequency inverters. In the paper, using a relatively simple model that allowed for the determination of amplitude–frequency characteristics and the dependence of transport speed on the forcing frequency, the impact of the resonator mass value on the device’s operation was shown. It was demonstrated that the value of this mass should be similar to the mass of the transporting trough, which increases the durability of the drive as well as the durability of the suspension between the trough and the resonator. A larger resonator mass also positively affects the dosing capabilities of the device and its energy efficiency during the dosing process with frequent transport stops. Full article
Show Figures

Figure 1

8 pages, 1176 KiB  
Proceeding Paper
Development of a Training Station for the Orientation of Dice Parts with Machine Vision
by Penko Mitev
Eng. Proc. 2024, 70(1), 57; https://doi.org/10.3390/engproc2024070057 - 6 Sep 2024
Cited by 1 | Viewed by 554
Abstract
This paper reviews the process of research, development and production of a training station for the optical recognition of dice parts with machine vision. This approach is chosen due to the lack of mechanical features to allow for classical orientation approaches. The embossed [...] Read more.
This paper reviews the process of research, development and production of a training station for the optical recognition of dice parts with machine vision. This approach is chosen due to the lack of mechanical features to allow for classical orientation approaches. The embossed dots are about 0.1–0.2 mm deep so it is impossible to design classical traps. The orientation occurs purely by visual comparison to a reference image, part of the current camera job. The sequence of parts is controlled by the programmable logic controller(PLC)program, which manages the camera job-changing process via I/O signals, thus ensuring the right face of the die is captured by the camera and achieving the right predefined order of the sequence. When the preset number of dice in the sequence is reached, they are released back to the vibratory bowl feeder by a pneumatic separator. This way, all dice parts circulate until they are recognized by the camera. There are jobs for each possible orientation of the dice and also a small HMI where the dice sequences could be adjusted by the operator(generally students). The main benefit for the students is the opportunity to program the PLC and to adjust the camera jobs for the detection of each possible orientation. This relies upon the fact that during the fall from the return conveyor to the bowl feeder, the parts flip and, thus, change their previous orientation to another side. Experiments are conducted regarding the probability of obtaining orientation “5” and all the other possible states in order to statistically express the probability. Full article
Show Figures

Figure 1

6 pages, 754 KiB  
Proceeding Paper
Development of a System for the Active Orientation of Small Screws
by Penko Mitev
Eng. Proc. 2024, 70(1), 55; https://doi.org/10.3390/engproc2024070055 - 26 Aug 2024
Viewed by 834
Abstract
This paper reviews the process of research, development and production of a system for the active orientation of small screws. The parts feature two different shapes on each side, which is suitable for machine vision inspection and not for classical vibratory bowl traps. [...] Read more.
This paper reviews the process of research, development and production of a system for the active orientation of small screws. The parts feature two different shapes on each side, which is suitable for machine vision inspection and not for classical vibratory bowl traps. When a part enters the jig, it is rotated at an angle of 90° for inspection. Based on the orientation, it may stay in this position or be rotated at 180°. This allows for active orientation; regardless of how the screw is presented to the camera, it is always positioned in the correct orientation by a servo mechanism. The main challenges are related to the small dimensions of the part. First of all, it has a diameter of only 3 mm and a length of 7 mm. A vibratory bowl feeder is used only for feeding and there is no orientation functionality in it. Afterwards, a vibratory linear feeder is placed so the ready parts are stacked and, thus, some buffer is created. This is important because vibratory bowl feeders are known for having unequal productivity in time and this could be solved by the linear feeder. Another key difficulty is the quality of the source parts. They are produced by several suppliers and sometimes there are chips and other remnants alongside the packages with screws. This imposes the need for a cleaning system as part of the servo actuator’s mechanism. Cleaning does not occur on every cycle; it is based on a timer that is predefined. Full article
Show Figures

Figure 1

16 pages, 3134 KiB  
Article
Control of Vibratory Feeder Device Mechanical Frequency Using the Modification of the Sinusoidal Supply Voltage Signal
by Žydrūnas Kavaliauskas and Igor Šajev
J. Low Power Electron. Appl. 2024, 14(1), 15; https://doi.org/10.3390/jlpea14010015 - 6 Mar 2024
Cited by 1 | Viewed by 3216
Abstract
In the industrial and sales processes, dosing systems of various constructions, whose operation is based on mechanical vibrations (vibratory feeders), are very often used. These systems face many problems, such as resonant frequency, flow instability of dosed product, instability of mechanical vibration amplitude, [...] Read more.
In the industrial and sales processes, dosing systems of various constructions, whose operation is based on mechanical vibrations (vibratory feeders), are very often used. These systems face many problems, such as resonant frequency, flow instability of dosed product, instability of mechanical vibration amplitude, etc., because most of them are based on controlling the frequency of the electrical signal of the supply voltage. All these factors negatively affect the durability and reliability of the vibratory feeder systems. During this research, an automatic control system for vibratory feeder was created, whose control process is based on the modification of the sinusoidal signal (partially changing the signal area). In addition, such a way of controlling the vibratory feeder is not discussed in the literature. As the research conducted in this paper has shown, while using sinusoidal signal modification it was possible to achieve a stable flow rate of bulk production (the flow rate varied from 0 to 100 g/s when the frequency of mechanical vibrations changed from 1 to 50 Hz) and a stable amplitude of mechanical oscillations was achieved and equal to 1.5 mm. The control system is based on the microcontroller PIC24FV32KA302 for which the special software was developed. The thyristor BTA16 used for voltage modification of the sinusoidal signal made it possible to ensure the reliable control of the sinusoidal voltage modification process. Full article
Show Figures

Figure 1

9 pages, 625 KiB  
Article
Piezoelectric Driving of Vibration Conveyors: An Experimental Assessment
by Domingos Alves Rade, Emerson Bastos De Albuquerque, Leandro Chaves Figueira and João Carlos Mendes Carvalho
Sensors 2013, 13(7), 9174-9182; https://doi.org/10.3390/s130709174 - 17 Jul 2013
Cited by 9 | Viewed by 11688
Abstract
Vibratory feeders or vibratory conveyors have been widely used for the transport and orientation of individual parts and bulk materials in many branches of industrial activity. From the designer’s standpoint, the current endeavor is to conceive efficient vibratory feeders, satisfying constraints of power [...] Read more.
Vibratory feeders or vibratory conveyors have been widely used for the transport and orientation of individual parts and bulk materials in many branches of industrial activity. From the designer’s standpoint, the current endeavor is to conceive efficient vibratory feeders, satisfying constraints of power consumption, vibration transmission and noise emission. Moreover, the interest in the reduction of maintenance cost is always present. In this context, this paper investigates experimentally the concept of vibratory conveying based on the use of piezoelectric materials for motion generation. A small-size prototype of a linear conveyor, in which lead-zirconate-titanate (PZT) patches are bonded to the resilient elements, is described. One of the main design goals is that the prototype is intended to be fed directly from the electric network, aiming at avoiding the use of electronic equipment for driving. To comply with this feature and, at the same time, enable to adjust the transport velocity, a mechanical device has been conceived in such a way that the first natural frequency of the conveyor can be changed. It is shown that the transport velocity is determined by the proximity between the excitation frequency and the first natural frequency of the conveyor. The experimental tests performed to characterize the dynamic behavior of the prototype are described and the range of transport velocities is determined. Full article
(This article belongs to the Special Issue Piezoelectric Sensors and Actuators)
Show Figures

Back to TopTop