Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = uphill quenching

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3554 KiB  
Article
The Quenching of Long-Wavelength Fluorescence by the Closed Reaction Center in Photosystem I in Thermostichus vulcanus at 77 K
by Parveen Akhtar, Ivo H. M. van Stokkum and Petar H. Lambrev
Int. J. Mol. Sci. 2024, 25(22), 12430; https://doi.org/10.3390/ijms252212430 - 19 Nov 2024
Cited by 1 | Viewed by 950
Abstract
Photosystem I in most organisms contains long-wavelength or “Red” chlorophylls (Chls) absorbing light beyond 700 nm. At cryogenic temperatures, the Red Chls become quasi-traps for excitations as uphill energy transfer is blocked. One pathway for de-excitation of the Red Chls is via transfer [...] Read more.
Photosystem I in most organisms contains long-wavelength or “Red” chlorophylls (Chls) absorbing light beyond 700 nm. At cryogenic temperatures, the Red Chls become quasi-traps for excitations as uphill energy transfer is blocked. One pathway for de-excitation of the Red Chls is via transfer to the oxidized RC (P700+), which has broad absorption in the near-infrared region. This study investigates the excitation dynamics of Red Chls in Photosystem I from the cyanobacterium Thermostichus vulcanus at cryogenic temperatures (77 K) and examines the role of the oxidized RC in modulating their fluorescence kinetics. Using time-resolved fluorescence spectroscopy, the kinetics of Red Chls were recorded for samples with open (neutral P700) and closed (P700+) RCs. We found that emission lifetimes in the range of 710–720 nm remained unaffected by the RC state, while more red-shifted emissions (>730 nm) decayed significantly faster when the RC was closed. A kinetic model describing the quenching by the oxidized RC was constructed based on simultaneous fitting to the recorded fluorescence emission in Photosystem I with open and closed RCs. The analysis resolved multiple Red Chl forms and variable quenching efficiencies correlated with their spectral properties. Only the most red-shifted Chls, with emission beyond 730 nm, are efficiently quenched by P700+, with rate constants of up to 6 ns−1. The modeling results support the notion that structural and energetic disorder in Photosystem I can have a comparable or larger effect on the excitation dynamics than the geometric arrangement of Chls. Full article
(This article belongs to the Special Issue New Insights into Photosystem I (Second Edition))
Show Figures

Figure 1

14 pages, 10686 KiB  
Article
The Optimized Homogenization Process of Cast 7Mo Super Austenitic Stainless Steel
by Runze Zhang, Jinshan He, Shiguang Xu, Fucheng Zhang and Xitao Wang
Materials 2023, 16(9), 3438; https://doi.org/10.3390/ma16093438 - 28 Apr 2023
Cited by 4 | Viewed by 1913
Abstract
Super austenitic stainless steels are expected to replace expensive alloys in harsh environments due to their superior corrosion resistance and mechanical properties. However, the ultra-high alloy contents drive serious segregation in cast steels, where the σ phase is difficult to eliminate. In this [...] Read more.
Super austenitic stainless steels are expected to replace expensive alloys in harsh environments due to their superior corrosion resistance and mechanical properties. However, the ultra-high alloy contents drive serious segregation in cast steels, where the σ phase is difficult to eliminate. In this study, the microstructural evolution of 7Mo super austenitic stainless steels under different homogenization methods was investigated. The results showed that after isothermal treatment for 30 h at 1250 °C, the σ phase in steels dissolved, while the remelting morphologies appeared at the phase boundaries. Therefore, the stepped solution heat treatment was further conducted to optimize the homogenized microstructure. The samples were heated up to 1220 °C, 1235 °C and 1250 °C with a slow heating rate, and held at these temperatures for 2 h, respectively. The elemental segregation was greatly reduced without incipient remelting and the σ phase was eventually reduced to less than 0.6%. A prolonged incubation below the dissolution temperature will lead to a spontaneous compositional adjustment of the eutectic σ phase, resulting in uphill diffusion of Cr and Mn, and reducing the homogenization efficiency of ISHT, which is avoided by SSHT. The hardness reduced from 228~236 Hv to 220~232 Hv by adopting the cooling process of “furnace cooling + water quench”. In addition, the study noticed that increasing the Ce content or decreasing the Mn content can both refine the homogenized grain size and accelerate diffusion processes. This study provides a theoretical and experimental basis for the process and composition optimization of super austenitic stainless steels. Full article
(This article belongs to the Special Issue Metalworking Processes: Theoretical and Experimental Study)
Show Figures

Figure 1

10 pages, 4422 KiB  
Article
Effect of Uphill Quenching on Microstructure and Residual Stress Reduction of AZ31B Magnesium Alloy Plate
by Pengfei Ji, Jin Zhang, Jinghan Yang, Yongle Zhao, Yong Lian, Xiaomin Yuan, Chaoyang Sun and Shitao Dou
Metals 2022, 12(12), 2102; https://doi.org/10.3390/met12122102 - 7 Dec 2022
Cited by 1 | Viewed by 1607
Abstract
Residual stress may be generated during the deformation process; cold and hot treatments on magnesium alloy, causing deformation; cracking; and other effects. Reducing the residual stress of magnesium alloys is of great significance for its size stability and quality. In this paper, the [...] Read more.
Residual stress may be generated during the deformation process; cold and hot treatments on magnesium alloy, causing deformation; cracking; and other effects. Reducing the residual stress of magnesium alloys is of great significance for its size stability and quality. In this paper, the residual stress in the AZ31B plate was compared with different uphill quenching processes: no uphill quenching (NUQ), liquid nitrogen–boiling water (100 °C) (LNB), liquid nitrogen–hot air (160 °C) (LNHA) and liquid nitrogen–water (25 °C) (LNR). Residual stresses with and without treatment were measured by X-ray diffraction. The effect of uphill quenching on hardness was discussed. The microstructure and diffraction pattern of the samples treated with different uphill quenching processes was investigated by EBSD and XRD. The results showed that the microstructure of magnesium alloy rolling plate was refined by the uphill quenching treatment, which can reduce the residual stress without decreasing the mechanical properties. The largest residual stress reduction rate was obtained by the liquid nitrogen–boiling water process. This treatment process can not only reduce the residual stress of the magnesium alloy rolling plates by 56% but also increase the hardness by 29%. Full article
Show Figures

Figure 1

Back to TopTop