Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = unknown seismic excitation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 8963 KiB  
Article
Raspberry Shake-Based Rapid Structural Identification of Existing Buildings Subject to Earthquake Ground Motion: The Case Study of Bucharest
by Ali Güney Özcebe, Alexandru Tiganescu, Ekin Ozer, Caterina Negulescu, Juan Jose Galiana-Merino, Enrico Tubaldi, Dragos Toma-Danila, Sergio Molina, Alireza Kharazian, Francesca Bozzoni, Barbara Borzi and Stefan Florin Balan
Sensors 2022, 22(13), 4787; https://doi.org/10.3390/s22134787 - 24 Jun 2022
Cited by 13 | Viewed by 5670
Abstract
The Internet of things concept empowered by low-cost sensor technologies and headless computers has upscaled the applicability of vibration monitoring systems in recent years. Raspberry Shake devices are among those systems, constituting a crowdsourcing framework and forming a worldwide seismic network of over [...] Read more.
The Internet of things concept empowered by low-cost sensor technologies and headless computers has upscaled the applicability of vibration monitoring systems in recent years. Raspberry Shake devices are among those systems, constituting a crowdsourcing framework and forming a worldwide seismic network of over a thousand nodes. While Raspberry Shake devices have been proven to densify seismograph arrays efficiently, their potential for structural health monitoring (SHM) is still unknown and is open to discovery. This paper presents recent findings from existing buildings located in Bucharest (Romania) equipped with Raspberry Shake 4D (RS4D) devices, whose signal recorded under multiple seismic events has been analyzed using different modal identification algorithms. The obtained results show that RS4D modules can capture the building vibration behavior despite the short-duration and low-amplitude excitation sources. Based on 15 RS4D device readings from five different multistorey buildings, the results do not indicate damage in terms of modal frequency decay. The findings of this research propose a baseline for future seismic events that can track the changes in vibration characteristics as a consequence of future strong earthquakes. In summary, this research presents multi-device, multi-testbed, and multi-algorithm evidence on the feasibility of RS4D modules as SHM instruments, which are yet to be explored in earthquake engineering. Full article
(This article belongs to the Special Issue Automatic Detection of Seismic Signals)
Show Figures

Figure 1

12 pages, 3164 KiB  
Article
Structural Damage Localization under Unknown Seismic Excitation Based on Mahalanobis Squared Distance of Strain Transmissibility Function
by Lijun Liu, Xin Zhang, Ying Lei and Zhupeng Zheng
Appl. Sci. 2022, 12(6), 3115; https://doi.org/10.3390/app12063115 - 18 Mar 2022
Cited by 1 | Viewed by 2073
Abstract
Due to the unpredictability of seismic excitation, the data-driven damage identification method, which only depends on the monitoring response data, has a good development prospect in structural health monitoring. In recent years, damage identification methods based on transmissibility function (TF) and Mahalanobis squared [...] Read more.
Due to the unpredictability of seismic excitation, the data-driven damage identification method, which only depends on the monitoring response data, has a good development prospect in structural health monitoring. In recent years, damage identification methods based on transmissibility function (TF) and Mahalanobis squared distance (MSD) have been widely studied. However, the existing methods are only applicable to damage warning. To overcome this limitation, an improved method for structural damage localization is proposed. Strain TF is used to eliminate the influence of unknown ambient excitation and unknown seismic excitation, which is more sensitive to local damage than traditional TF based on acceleration and displacement data. The MSD of strain TF is employed to construct a novel damage indicator that is used to identify the damage location. Two numerical simulations have been conducted to verify the feasibility of the method for damage localization and good anti-noise performance. In the case of the multi-damage condition, the novel damage indicator is performed to estimate the severity of damage to some extent. Full article
(This article belongs to the Special Issue Signal Processing, Applications and Systems)
Show Figures

Figure 1

Back to TopTop