Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = unconnected leg

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 10853 KiB  
Article
Experimental Analysis of Channel Steel Member under Tension Load with Damage in the Unconnected Legs
by Ahmed M. Sayed, Hani Alanazi, Aref A. Abadel, Yousef R. Alharbi and Mohd F. Shamsudin
Materials 2023, 16(2), 527; https://doi.org/10.3390/ma16020527 - 5 Jan 2023
Cited by 1 | Viewed by 1712
Abstract
Damage occurring to steel element structures is highly possible due to tearing ruptures, corrosion, or the adoption of sudden loads. The damage has a great effect on their capacity to bear load and the corresponding elongation, as well as the distribution of the [...] Read more.
Damage occurring to steel element structures is highly possible due to tearing ruptures, corrosion, or the adoption of sudden loads. The damage has a great effect on their capacity to bear load and the corresponding elongation, as well as the distribution of the stresses in the cross-section of the element. Therefore, in the present research, experimental tests were carried out on 15 specimens of channel steel elements with different damage ratios in the unconnected legs and at different locations along the element’s length. Through the test, the load and the corresponding elongation values were obtained for the control and damaged specimens. From the study of the different variables, it was demonstrated that the damage location does not significantly affect the load capacity, with a maximum difference of 1.9%. With the presence of the damage in only one leg at a ratio of less than or equal to 40%, the prediction of the value of the loss in the load is within the safe limit. However, if this ratio increases, there is a defect in calculating the loss in the load as it is greater than the effect of the damage. If there is any damage in the two legs of the channel together, the prediction of the loss of load is within the safe limit, where the loss is less than the effect of the damage ratio. We propose a model that can predict the capacitance of the axial load of steel channel elements through identifying the ratio of damage in the unconnected leg. Full article
(This article belongs to the Special Issue Damage and Mechanical Properties of Materials)
Show Figures

Figure 1

43 pages, 2698 KiB  
Article
The 2-D Cluster Variation Method: Topography Illustrations and Their Enthalpy Parameter Correlations
by Alianna J. Maren
Entropy 2021, 23(3), 319; https://doi.org/10.3390/e23030319 - 8 Mar 2021
Cited by 5 | Viewed by 2873
Abstract
One of the biggest challenges in characterizing 2-D image topographies is finding a low-dimensional parameter set that can succinctly describe, not so much image patterns themselves, but the nature of these patterns. The 2-D cluster variation method (CVM), introduced by Kikuchi in 1951, [...] Read more.
One of the biggest challenges in characterizing 2-D image topographies is finding a low-dimensional parameter set that can succinctly describe, not so much image patterns themselves, but the nature of these patterns. The 2-D cluster variation method (CVM), introduced by Kikuchi in 1951, can characterize very local image pattern distributions using configuration variables, identifying nearest-neighbor, next-nearest-neighbor, and triplet configurations. Using the 2-D CVM, we can characterize 2-D topographies using just two parameters; the activation enthalpy (ε0) and the interaction enthalpy (ε1). Two different initial topographies (“scale-free-like” and “extreme rich club-like”) were each computationally brought to a CVM free energy minimum, for the case where the activation enthalpy was zero and different values were used for the interaction enthalpy. The results are: (1) the computational configuration variable results differ significantly from the analytically-predicted values well before ε1 approaches the known divergence as ε10.881, (2) the range of potentially useful parameter values, favoring clustering of like-with-like units, is limited to the region where ε0<3 and ε1<0.25, and (3) the topographies in the systems that are brought to a free energy minimum show interesting visual features, such as extended “spider legs” connecting previously unconnected “islands,” and as well as evolution of “peninsulas” in what were previously solid masses. Full article
(This article belongs to the Special Issue Entropy in Brain Networks)
Show Figures

Figure 1

Back to TopTop