error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = ultraviolet reactive fluorine surfactant

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 682 KB  
Article
Nanoimprint Resist Material Containing Ultraviolet Reactive Fluorine Surfactant for Defect Reduction in Lithographic Fabrication
by Satoshi Takei and Atsushi Sekiguchi
Appl. Sci. 2012, 2(1), 24-34; https://doi.org/10.3390/app2010024 - 16 Jan 2012
Cited by 16 | Viewed by 8315
Abstract
The generated resist based defects on the template in addition to the presence of particles and contaminants is critical for ultraviolet curing of nanoimprint lithographic fabrication. This procedure is proven to be suitable for advanced resist material design under the process conditions. Nanoimprint [...] Read more.
The generated resist based defects on the template in addition to the presence of particles and contaminants is critical for ultraviolet curing of nanoimprint lithographic fabrication. This procedure is proven to be suitable for advanced resist material design under the process conditions. Nanoimprint resist material containing an ultraviolet reactive fluorine surfactant was developed to modify the fundamental surface interactions between resists and the template for defect reduction in nanoimprint patterning replication. The developed acrylate type nanoimprint resist material containing 4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoro-2-hydroxyundecyl acrylate as an ultraviolet reactive fluorine surfactant, indicated excellent patterning dimensional accuracy by minimizing surface free energy, and having the effect of improving the generated resist based defect numbers on the template, with a 500 nm contact hole and 2 μm line patterns, in the replication of 20 nanoimprint process cycles. This desirable concept using an ultraviolet reactive fluorine surfactant with an acrylate group in the acrylate type nanoimprint resist material is one of the most promising processes ready to be incorporated into mass fabrication in the next generation of electronic devices. Full article
(This article belongs to the Special Issue Organo-Fluorine Chemical Science)
Show Figures

Figure 1

Back to TopTop