Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = ultraviolet photodissociation (UVPD)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3368 KiB  
Article
Structural Characterization of the Metalized Radical Cations of Adenosine ([Ade+Li-H]•+ and [Ade+Na-H]•+) by Infrared Multiphoton Dissociation Spectroscopy and Theoretical Studies
by Min Kou, Luyang Jiao, Shiyin Xu, Mengying Du, Yameng Hou and Xianglei Kong
Int. J. Mol. Sci. 2023, 24(20), 15385; https://doi.org/10.3390/ijms242015385 - 20 Oct 2023
Cited by 4 | Viewed by 1275
Abstract
Nucleoside radicals are key intermediates in the process of DNA damage, and alkali metal ions are a common group of ions in living organisms. However, so far, there has been a significant lack of research on the structural effects of alkali metal ions [...] Read more.
Nucleoside radicals are key intermediates in the process of DNA damage, and alkali metal ions are a common group of ions in living organisms. However, so far, there has been a significant lack of research on the structural effects of alkali metal ions on nucleoside free radicals. In this study, we report a new method for generating metalized nucleoside radical cations in the gas phase. The radical cations [Ade+M-H]•+ (M = Li, Na) are generated by the 280 nm ultraviolet photodissociation (UVPD) of the precursor ions of lithiated and sodiated ions of 2-iodoadenine in a Fourier transform ion cyclotron resonance (FT ICR) cell. Further infrared multiphoton dissociation (IRMPD) spectra of both radical cations were recorded in the region of 2750–3750 cm−1. By combining these results with theoretical calculations, the most stable isomers of both radicals can be identified, which share the common characteristics of triple coordination patterns of the metal ions. For both radical species, the lowest-energy isomers undergo hydrogen transfer. Although the sugar ring in the most stable isomer of [Ade+Li-H]•+ is in a (South, syn) conformation similar to that of [Ado+Na]+, [Ade+Na-H]•+ is distinguished by the unexpected opening of the sugar ring. Their theoretical spectra are in good agreement with experimental spectra. However, due to the flexibility of the structures and the complexity of their potential energy surfaces, the hydrogen transfer pathways still need to be further studied. Considering that the free radicals formed directly after C-I cleavage have some similar spectral characteristics, the existence of these corresponding isomers cannot be ruled out. The findings imply that the structures of nucleoside radicals may be significantly influenced by the attached alkali metal ions. More detailed experiments and theoretical calculations are still crucial. Full article
(This article belongs to the Special Issue Gas-Phase Transformations: The Mechanisms and Guidances)
Show Figures

Graphical abstract

16 pages, 2840 KiB  
Article
Evaluating the Performance of 193 nm Ultraviolet Photodissociation for Tandem Mass Tag Labeled Peptides
by Mowei Zhou, Ju Yeon Lee, Gun Wook Park, Neha Malhan, Tao Liu and Jared B. Shaw
Analytica 2021, 2(4), 140-155; https://doi.org/10.3390/analytica2040014 - 9 Oct 2021
Cited by 3 | Viewed by 3827
Abstract
Despite the successful application of tandem mass tags (TMT) for peptide quantitation, missing reporter ions in higher energy collisional dissociation (HCD) spectra remains a challenge for consistent quantitation, especially for peptides with labile post-translational modifications. Ultraviolet photodissociation (UVPD) is an alternative ion activation [...] Read more.
Despite the successful application of tandem mass tags (TMT) for peptide quantitation, missing reporter ions in higher energy collisional dissociation (HCD) spectra remains a challenge for consistent quantitation, especially for peptides with labile post-translational modifications. Ultraviolet photodissociation (UVPD) is an alternative ion activation method shown to provide superior coverage for sequencing of peptides and intact proteins. Here, we optimized and evaluated 193 nm UVPD for the characterization of TMT-labeled model peptides, HeLa proteome, and N-glycopeptides from model proteins. UVPD yielded the same TMT reporter ions as HCD, at m/z 126–131. Additionally, UVPD produced a wide range of fragments that yielded more complete characterization of glycopeptides and less frequent missing TMT reporter ion channels, whereas HCD yielded a strong tradeoff between characterization and quantitation of TMT-labeled glycopeptides. However, the lower fragmentation efficiency of UVPD yielded fewer peptide identifications than HCD. Overall, 193 nm UVPD is a valuable tool that provides an alternative to HCD for the quantitation of large and highly modified peptides with labile PTMs. Continued development of instrumentation specific to UVPD will yield greater fragmentation efficiency and fulfil the potential of UVPD to be an all-in-one spectrum ion activation method for broad use in the field of proteomics. Full article
Show Figures

Figure 1

14 pages, 1453 KiB  
Article
Ultraviolet Photodissociation for Non-Target Screening-Based Identification of Organic Micro-Pollutants in Water Samples
by Christian Panse, Seema Sharma, Romain Huguet, Dennis Vughs, Jonas Grossmann and Andrea Mizzi Brunner
Molecules 2020, 25(18), 4189; https://doi.org/10.3390/molecules25184189 - 12 Sep 2020
Cited by 7 | Viewed by 4340
Abstract
Non-target screening (NTS) based on the combination of liquid chromatography coupled to high-resolution mass spectrometry has become the key method to identify organic micro-pollutants (OMPs) in water samples. However, a large number of compounds remains unidentified with current NTS approaches due to poor [...] Read more.
Non-target screening (NTS) based on the combination of liquid chromatography coupled to high-resolution mass spectrometry has become the key method to identify organic micro-pollutants (OMPs) in water samples. However, a large number of compounds remains unidentified with current NTS approaches due to poor quality fragmentation spectra generated by suboptimal fragmentation methods. Here, the potential of the alternative fragmentation technique ultraviolet photodissociation (UVPD) to improve identification of OMPs in water samples was investigated. A diverse set of water-relevant OMPs was selected based on k-means clustering and unsupervised artificial neural networks. The selected OMPs were analyzed using an Orbitrap Fusion Lumos equipped with UVPD. Therewith, information-rich MS2 fragmentation spectra of compounds that fragment poorly with higher-energy collisional dissociation (HCD) could be attained. Development of an R-based data analysis workflow and user interface facilitated the characterization and comparison of HCD and UVPD fragmentation patterns. UVPD and HCD generated both unique and common fragments, demonstrating that some fragmentation pathways are specific to the respective fragmentation method, while others seem more generic. Application of UVPD fragmentation to the analysis of surface water enabled OMP identification using existing HCD spectral libraries. However, high-throughput applications still require optimization of informatics workflows and spectral libraries tailored to UVPD. Full article
(This article belongs to the Special Issue (Mass Spectrometric) Non Target Screening–Techniques and Strategies)
Show Figures

Figure 1

19 pages, 2345 KiB  
Article
A Novel Function of Sphingosine Kinase 2 in the Metabolism of Sphinga-4,14-Diene Lipids
by Timothy Andrew Couttas, Yepy Hardi Rustam, Huitong Song, Yanfei Qi, Jonathan David Teo, Jinbiao Chen, Gavin Edmund Reid and Anthony Simon Don
Metabolites 2020, 10(6), 236; https://doi.org/10.3390/metabo10060236 - 8 Jun 2020
Cited by 18 | Viewed by 5800
Abstract
The number, position, and configuration of double bonds in lipids affect membrane fluidity and the recruitment of signaling proteins. Studies on mammalian sphingolipids have focused on those with a saturated sphinganine or mono-unsaturated sphingosine long chain base. Using high-resolution liquid chromatography-tandem mass spectrometry [...] Read more.
The number, position, and configuration of double bonds in lipids affect membrane fluidity and the recruitment of signaling proteins. Studies on mammalian sphingolipids have focused on those with a saturated sphinganine or mono-unsaturated sphingosine long chain base. Using high-resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS), we observed a marked accumulation of lipids containing a di-unsaturated sphingadiene base in the hippocampus of mice lacking the metabolic enzyme sphingosine kinase 2 (SphK2). The double bonds were localized to positions C4–C5 and C14–C15 of sphingadiene using ultraviolet photodissociation-tandem mass spectrometry (UVPD-MS/MS). Phosphorylation of sphingoid bases by sphingosine kinase 1 (SphK1) or SphK2 forms the penultimate step in the lysosomal catabolism of all sphingolipids. Both SphK1 and SphK2 phosphorylated sphinga-4,14-diene as efficiently as sphingosine, however deuterated tracer experiments in an oligodendrocyte cell line demonstrated that ceramides with a sphingosine base are more rapidly metabolized than those with a sphingadiene base. Since SphK2 is the dominant sphingosine kinase in brain, we propose that the accumulation of sphingadiene-based lipids in SphK2-deficient brains results from the slower catabolism of these lipids, combined with a bottleneck in the catabolic pathway created by the absence of SphK2. We have therefore uncovered a previously unappreciated role for SphK2 in lipid quality control. Full article
(This article belongs to the Section Lipid Metabolism)
Show Figures

Figure 1

Back to TopTop