Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = ultrasonic-vibration-assisted ball polishing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5778 KiB  
Article
Ultrasonic-Assisted Surface Finishing of STAVAX Mold Steel Using Lab-Made Polishing Balls on a 5-Axis CNC Machining Center
by Fang-Jung Shiou, Jian-Nan Pan, Zhao-Li Ding and Sun-Peng Lin
Materials 2023, 16(17), 5888; https://doi.org/10.3390/ma16175888 - 28 Aug 2023
Cited by 1 | Viewed by 1715
Abstract
The inconvenience of conventional wool ball polishing is that the surface finishing process should be equipped with a slurry container. The main objective of this research is to develop an ultrasonic-assisted surface finishing process for STAVAX mold steel on a 5-axis CNC machining [...] Read more.
The inconvenience of conventional wool ball polishing is that the surface finishing process should be equipped with a slurry container. The main objective of this research is to develop an ultrasonic-assisted surface finishing process for STAVAX mold steel on a 5-axis CNC machining center, by using new lab-made rubber polishing balls containing the abrasive aluminum oxide instead of the traditional wool ball polishing. In total, five types (type A to type E) of new rubber-matrixed polishing balls with a composite of nitrile butadiene rubber (NBR), an abrasive of aluminum oxide, and an additive of silicon dioxide have been developed. The performance of the composites with different grain sizes (0.05 μm to 3 μm) and concentrations of the abrasive of aluminum oxide have been investigated. The effects of multiple polishing passes on the surface roughness improvement for the lab-made polishing balls have also been investigated in this study. A surface roughness of Ra 0.027 μm on average was achieved by using the multiple polishing process of E-C-B-A. The volumetric wear of the lab-made polishing balls, using ultrasonic vibration-assisted polishing, can be improved from about 12.64% (type A) to 65.48% (type E) compared with the non-vibration-assisted polishing. The suitable combination of the ultrasonic vibration-assisted polishing parameters were an amplitude of 10 μm, a frequency of 23 kHz, a spindle speed of 5000 rpm, a feed rate of 60 mm/min, a stepover of 20 μm, a penetration depth of 180 μm, and a polishing pass of E-C-B-A, based on the experimental results. The surface roughness improvement on a test carrier with a saddle surface has also been presented by using the ultrasonic vibration-assisted polishing with the lab-made polishing balls. Full article
(This article belongs to the Special Issue Ultrasound for Material Characterization and Processing II)
Show Figures

Figure 1

13 pages, 3639 KiB  
Article
Reduction in the Volumetric Wear of a Ball Polishing Tool Using Ultrasonic-Vibration-Assisted Polishing Process
by Fang-Jung Shiou, Zhao-Li Ding and Sun-Peng Lin
Lubricants 2022, 10(12), 339; https://doi.org/10.3390/lubricants10120339 - 30 Nov 2022
Cited by 3 | Viewed by 2261
Abstract
Ultraprecision freeform polishing using a bonnet or a felt ball mounted on a polishing head plays an important role in the mold and lens production industries. The volumetric wear of a bonnet or a felt polishing ball is still a problem to be [...] Read more.
Ultraprecision freeform polishing using a bonnet or a felt ball mounted on a polishing head plays an important role in the mold and lens production industries. The volumetric wear of a bonnet or a felt polishing ball is still a problem to be solved. The objective of this study was to develop an ultrasonic-vibration-assisted ball polishing process on a CNC machining center to improve the surface roughness of a STAVAX mold steel and to reduce the volumetric wear of the polishing ball. The optimal combination of the ultrasonic-vibration-assisted ball polishing parameters for a plane surface was determined by conducting the Taguchi L18 matrix experiments, ANOVA analysis, and verification experiments. The surface roughness of the polished specimens was improved from the burnished surface roughness of Ra 0.122 μm to Ra 0.022 μm. In applying the optimal plane surface ball burnishing and vibration-assisted spherical polishing parameters sequentially to a fine-milled and burnished aspherical lens surface carrier on a five-axis machining center, the surface roughness of Ra 0.014 μm was obtainable. The improvement in the volumetric wear of the polishing ball was about 62% using the vibration-assisted polishing process compared with the nonvibrated polishing process. Full article
(This article belongs to the Special Issue Assessment of Abrasive Wear)
Show Figures

Figure 1

Back to TopTop