Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline

Search Results (1)

Search Parameters:
Keywords = ultra-thin ReS2 nanosheets

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 3163 KiB  
Article
Ultra-Thin ReS2 Nanosheets Grown on Carbon Black for Advanced Lithium-Ion Battery Anodes
by Yaping Yan, Kyeong-Youn Song, Minwoo Cho, Tae Hoon Lee, Chiwon Kang and Hoo-Jeong Lee
Materials 2019, 12(9), 1563; https://doi.org/10.3390/ma12091563 - 13 May 2019
Cited by 8 | Viewed by 4195
Abstract
ReS2 nanosheets are grown on the surface of carbon black (CB) via an efficient hydrothermal method. We confirmed the ultra-thin ReS2 nanosheets with ≈1–4 layers on the surface of the CB (ReS2@CB) by using analytical techniques of field emission [...] Read more.
ReS2 nanosheets are grown on the surface of carbon black (CB) via an efficient hydrothermal method. We confirmed the ultra-thin ReS2 nanosheets with ≈1–4 layers on the surface of the CB (ReS2@CB) by using analytical techniques of field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM). The ReS2@CB nanocomposite showed high specific capacities of 760, 667, 600, 525, and 473 mAh/g at the current densities of 0.1 (0.23 C), 0.2 (0.46 C), 0.3 (0.7 C), 0.5 (1.15 C) and 1.0 A/g (2.3 C), respectively, in conjunction with its excellent cycling performance (432 mAh/g at 2.3 C; 91.4% capacity retention) after 100 cycles. Such LIB performance is greatly higher than pure CB and ReS2 powder samples. These results could be due to the following reasons: (1) the low-cost CB serves as a supporter enabling the formation of ≈1–4 layered nanosheets of ReS2, thus avoiding its agglomeration; (2) the CB enhances the electrical conductivity of the ReS2@CB nanocomposite; (3) the ultra-thin (1–4 layers) ReS2 nanosheets with imperfect structure can function as increasing the number of active sites for reaction of Li+ ions with electrolytes. The outstanding performance and unique structural characteristics of the ReS2@CB anodes make them promising candidates for the ever-increasing development of advanced LIBs. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

Back to TopTop