Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = ultra-long-stroke diesel engine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 6250 KiB  
Article
Torsional Vibration Stress and Fatigue Strength Analysis of Marine Propulsion Shafting System Based on Engine Operation Patterns
by Myeong-Ho Song, Xuan Duong Pham and Quang Dao Vuong
J. Mar. Sci. Eng. 2020, 8(8), 613; https://doi.org/10.3390/jmse8080613 - 16 Aug 2020
Cited by 17 | Viewed by 6119
Abstract
Modern merchant ships use marine propulsion systems equipped with an ultra-long-stroke diesel engine that directly drives a large slow-turning propeller. Such systems use fewer cylinders and generate greater power at slower shaft speeds, which affords improved propulsion performance as well as low repair [...] Read more.
Modern merchant ships use marine propulsion systems equipped with an ultra-long-stroke diesel engine that directly drives a large slow-turning propeller. Such systems use fewer cylinders and generate greater power at slower shaft speeds, which affords improved propulsion performance as well as low repair and maintenance costs. However, this also results in higher torsional vibrations, which can lead to the fatigue of the shafting system. Tests performed on various marine propulsion systems with 5- to 7-cylinder engines have shown that engines with fewer cylinders exhibit a correspondingly wider barred speed range (BSR) and higher torsional vibration stresses. Thus, it is necessary to investigate the optimal engine operation patterns required to quickly pass the BSR with smaller torsional vibration. In this study, we carried out a series of BSR passage experiments during actual sea trials to evaluate the intermediate shaft performance under different engine operation patterns. The fractional damage accumulations due to transient torsional vibration stresses were calculated to estimate the fatigue lifetime of the shafting system. Our analysis results show that the torsional fatigue damage during BSR decelerations are small and negligible; however, the fractional damage during accelerations is a matter of concern. Our study determines the optimal main engine operation pattern for quick passage through the BSR with the smallest torsional vibration amplitudes and the least fractional damage accumulation, which can therefore extend the fatigue lifetime of the entire propulsion shafting system. Based on this analysis, we also suggest the optimum engine pattern for safe BSR passage. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop