Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = twin I-girder bridge

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7655 KiB  
Article
Theoretical Method to Predict Internal Force of Crossbeam in Steel–Concrete Composite Twin I-Girder Bridge under Torsional Loading
by Jiangjiang Li, Yongjian Liu, Liang Chai, Zihan Xing, Bowen Feng and Lei Jiang
Appl. Sci. 2023, 13(11), 6669; https://doi.org/10.3390/app13116669 - 30 May 2023
Cited by 1 | Viewed by 2393
Abstract
During the operational phase of a bridge, the crossbeam, acting as a supporting member, plays an important role in keeping the cross-sectional shape constant in addition to resisting against various lateral and longitudinal loads and distributing the dead and the live loads to [...] Read more.
During the operational phase of a bridge, the crossbeam, acting as a supporting member, plays an important role in keeping the cross-sectional shape constant in addition to resisting against various lateral and longitudinal loads and distributing the dead and the live loads to the adjacent main girders. The complex functional requirements lead to a complex internal force composition of the crossbeam. When subjected to torque, the two main beams of the twin I-girder bridge will have deformation in opposite longitudinal directions (known as warping deformation) to counteract the torque. The existing research has not considered the impact of main beam warping deformation on the internal force of the crossbeam. Based on the existing research, this article further considers the impact of main beam warping deformation on the internal force of the crossbeam, making the calculation of the internal force of the crossbeam more accurate. The results show that the torsional characteristics of the continuous twin I-girder bridge can be calculated using Vlasov’s theory of thin-walled structures combined with the displacement method. As for the effect of the crossbeam on the torsional stiffness of the structure, it can be managed by making the crossbeam stiffness continuous; however, in general, the equivalent stiffness is small compared to the stiffness of the main beam and it can be ignored. The crossbeam can be simplified to a bar with two solid ends for the internal force calculation whose formula is proposed in this paper, based on the existing frame model, and it can further consider the influence of warping deformation of the main beam on the internal force of the beam, and the calculation accuracy is high. Full article
(This article belongs to the Special Issue Structural Design and Analysis for Constructions and Buildings)
Show Figures

Figure 1

Back to TopTop