Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = tryptophanyl-tRNA synthetase deficiency and gene mutations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 50385 KB  
Article
Towards an Integrative Understanding of tRNA Aminoacylation–Diet–Host–Gut Microbiome Interactions in Neurodegeneration
by Elena L. Paley and George Perry
Nutrients 2018, 10(4), 410; https://doi.org/10.3390/nu10040410 - 26 Mar 2018
Cited by 16 | Viewed by 9054
Abstract
Transgenic mice used for Alzheimer’s disease (AD) preclinical experiments do not recapitulate the human disease. In our models, the dietary tryptophan metabolite tryptamine produced by human gut microbiome induces tryptophanyl-tRNA synthetase (TrpRS) deficiency with consequent neurodegeneration in cells and mice. Dietary supplements, antibiotics [...] Read more.
Transgenic mice used for Alzheimer’s disease (AD) preclinical experiments do not recapitulate the human disease. In our models, the dietary tryptophan metabolite tryptamine produced by human gut microbiome induces tryptophanyl-tRNA synthetase (TrpRS) deficiency with consequent neurodegeneration in cells and mice. Dietary supplements, antibiotics and certain drugs increase tryptamine content in vivo. TrpRS catalyzes tryptophan attachment to tRNAtrp at initial step of protein biosynthesis. Tryptamine that easily crosses the blood–brain barrier induces vasculopathies, neurodegeneration and cell death via TrpRS competitive inhibition. TrpRS inhibitor tryptophanol produced by gut microbiome also induces neurodegeneration. TrpRS inhibition by tryptamine and its metabolites preventing tryptophan incorporation into proteins lead to protein biosynthesis impairment. Tryptophan, a least amino acid in food and proteins that cannot be synthesized by humans competes with frequent amino acids for the transport from blood to brain. Tryptophan is a vulnerable amino acid, which can be easily lost to protein biosynthesis. Some proteins marking neurodegenerative pathology, such as tau lack tryptophan. TrpRS exists in cytoplasmic (WARS) and mitochondrial (WARS2) forms. Pathogenic gene variants of both forms cause TrpRS deficiency with consequent intellectual and motor disabilities in humans. The diminished tryptophan-dependent protein biosynthesis in AD patients is a proof of our model-based disease concept. Full article
(This article belongs to the Special Issue Brain Aging and Gut-Brain Axis)
Show Figures

Graphical abstract

Back to TopTop