Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = trigonal urothelium

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2591 KB  
Article
Gene Expression-Based Functional Differences between the Bladder Body and Trigonal Urothelium in Adolescent Female Patients with Micturition Dysfunction
by Natalia Zeber-Lubecka, Maria Kulecka, Katarzyna Załęska-Oracka, Michalina Dąbrowska, Aneta Bałabas, Ewa E. Hennig, Magdalena Szymanek-Szwed, Michał Mikula, Beata Jurkiewicz and Jerzy Ostrowski
Biomedicines 2022, 10(6), 1435; https://doi.org/10.3390/biomedicines10061435 - 17 Jun 2022
Cited by 6 | Viewed by 2730
Abstract
The aim of this study is to determine the molecular differences between the urothelial transcriptomes of the bladder body and trigone. The transcriptomes of the bladder body and trigonal epithelia were analyzed by massive sequencing of total epithelial RNA. The profiles of urothelial [...] Read more.
The aim of this study is to determine the molecular differences between the urothelial transcriptomes of the bladder body and trigone. The transcriptomes of the bladder body and trigonal epithelia were analyzed by massive sequencing of total epithelial RNA. The profiles of urothelial and urinal microbiomes were assessed by amplicon sequencing of bacterial 16S rRNA genes in 17 adolescent females with pain and micturition dysfunction and control female subjects. The RNA sequencing identified 10,261 differentially expressed genes (DEGs) in the urothelia of the bladder body and trigone, with the top 1000 DEGs at these locations annotated to 36 and 77 of the Reactome-related pathways in the bladder body and trigone, respectively. These pathways represented 11 categories enriched in the bladder body urothelium, including extracellular matrix organization, the neuronal system, and 15 categories enriched in the trigonal epithelium, including RHO GTPase effectors, cornified envelope formation, and neutrophil degranulation. Five bacterial taxa in urine differed significantly in patients and healthy adolescent controls. The evaluation of their transcriptomes indicated that the bladder body and trigonal urothelia were functionally different tissues. The molecular differences between the body and trigonal urothelia responsible for clinical symptoms in adolescents with bladder pain syndrome/interstitial cystitis remain unclear. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

Back to TopTop