Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = trichohyalin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2172 KB  
Communication
Integrated Meta-Analysis of Scalp Transcriptomics and Serum Proteomics Defines Alopecia Areata Subtypes and Core Disease Pathways
by Li Xi, Elena Peeva, Yuji Yamaguchi, Zhan Ye, Craig L. Hyde and Emma Guttman-Yassky
Int. J. Mol. Sci. 2025, 26(19), 9662; https://doi.org/10.3390/ijms26199662 - 3 Oct 2025
Abstract
Alopecia areata (AA) is a chronic autoimmune disorder characterized by non-scarring hair loss, with subtypes ranging from patchy alopecia (AAP) to alopecia totalis and universalis (AT/AU). The aim of this research is to investigate molecular features across AA severity by performing an integrated [...] Read more.
Alopecia areata (AA) is a chronic autoimmune disorder characterized by non-scarring hair loss, with subtypes ranging from patchy alopecia (AAP) to alopecia totalis and universalis (AT/AU). The aim of this research is to investigate molecular features across AA severity by performing an integrated analysis of scalp transcriptomic datasets (GSE148346, GSE68801, GSE45512, GSE111061) and matched serum proteomic data from GSE148346. Differential expression analysis indicated that, relative to normal scalp, non-lesional AA tissue shows early immune activation—including Type 1 (C-X-C motif chemokine ligand 9 (CXCL9), CXCL10, CD8a molecule (CD8A), C-C motif chemokine ligand 5 (CCL5)) and Type 2 (CCL13, CCL18) signatures—together with reduced expression of hair-follicle structural genes (keratin 32(KRT32)–35, homeobox C13 (HOXC13)) (FDR < 0.05, |fold change| > 1.5). Lesional AAP and AT/AU scalp showed stronger pro-inflammatory upregulation and greater loss of keratins and keratin-associated proteins (KRT81, KRT83, desmoglein 4 (DSG4), KRTAP12/15) compared with non-lesional scalp (FDR < 0.05, |fold change| > 1.5). Ferroptosis-associated genes (cAMP responsive element binding protein 5 (CREB5), solute carrier family 40 member 1 (SLC40A1), (lipocalin 2) LCN2, SLC7A11) and IRS (inner root sheath) differentiation genes (KRT25, KRT27, KRT28, KRT71–KRT75, KRT81, KRT83, KRT85–86, trichohyalin (TCHH)) were consistently repressed across subtypes, with the strongest reductions in AT/AU lesions versus AAP lesions, suggesting that oxidative-stress pathways and follicular structural integrity may contribute to subtype-specific pathology. Pathway analysis of lesional versus non-lesional scalp highlighted enrichment of IFN-α/γ, cytotoxic, and IL-15 signaling. Serum proteomic profiling, contrasting AA vs. healthy controls, corroborated scalp findings, revealing parallel alterations in immune-related proteins (CXCL9–CXCL10, CD163, interleukin-16 (IL16)) and structural markers (angiopoietin 1 (ANGPT1), decorin (DCN), chitinase-3-like protein 1 (CHI3L1)) across AA subtypes. Together, these data offer an integrated view of immune, oxidative, and structural changes in AA and found ferroptosis-related and IRS genes, along with immune signatures, as potential molecular indicators to support future studies on disease subtypes and therapeutic strategies. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

9 pages, 792 KB  
Article
Proteomic Analysis of Crimped and Straight Wool in Chinese Tan Sheep
by An Shi, Sijia Ma, Zhuo Yang, Wei Ding, Jinyang Tian, Xin Chen and Jinzhong Tao
Animals 2024, 14(19), 2858; https://doi.org/10.3390/ani14192858 - 4 Oct 2024
Viewed by 1212
Abstract
Crimped wool in Tan sheep gradually transitions to straight wool after 35 days (the er-mao stage), which reduces its commercial value. To investigate the changes in wool proteins during this stage, we performed comparative proteomic analysis of the straight and crimped wool using [...] Read more.
Crimped wool in Tan sheep gradually transitions to straight wool after 35 days (the er-mao stage), which reduces its commercial value. To investigate the changes in wool proteins during this stage, we performed comparative proteomic analysis of the straight and crimped wool using tandem mass tag (TMT)-based quantification. The mean fur curvature (MFC) of crimped wool was significantly greater than that of straight wool (p < 0.001). We identified 1218 proteins between the two types of wool, including 50 keratins (Ks) and 10 keratin-associated proteins (KAPs). There were 213 differentially expressed proteins, including 13 Ks and 4 KAPs. Crimped wool showed relatively high abundances of KAP24-1, K84, K32, K82, and intermediate filament rod domain-containing protein (IRDC), whereas straight wool had relatively high abundances of K6A, K27, K80, KAP16-1, KAP27-1, and trichohyalin (TCHH). The expression levels of KAP16-1, KAP24-1, and KAP27-1 were related to the ratio of paracortex, which may be associated with wool crimp formation. Additionally, high expressions of TCHH, K27, and K6A in the inner root sheath (IRS) were linked to fiber fineness in straight wool. These findings provide insight into the overall expression and distribution patterns of Ks and KAPs, offering opportunities to improve wool quality and enhance its economic potential in the textile industry. Full article
Show Figures

Figure 1

16 pages, 1145 KB  
Review
Development-Associated Genes of the Epidermal Differentiation Complex (EDC)
by Karin Brigit Holthaus and Leopold Eckhart
J. Dev. Biol. 2024, 12(1), 4; https://doi.org/10.3390/jdb12010004 - 15 Jan 2024
Cited by 10 | Viewed by 4266
Abstract
The epidermal differentiation complex (EDC) is a cluster of genes that encode protein components of the outermost layers of the epidermis in mammals, reptiles and birds. The development of the stratified epidermis from a single-layered ectoderm involves an embryo-specific superficial cell layer, the [...] Read more.
The epidermal differentiation complex (EDC) is a cluster of genes that encode protein components of the outermost layers of the epidermis in mammals, reptiles and birds. The development of the stratified epidermis from a single-layered ectoderm involves an embryo-specific superficial cell layer, the periderm. An additional layer, the subperiderm, develops in crocodilians and over scutate scales of birds. Here, we review the expression of EDC genes during embryonic development. Several EDC genes are expressed predominantly or exclusively in embryo-specific cell layers, whereas others are confined to the epidermal layers that are maintained in postnatal skin. The S100 fused-type proteins scaffoldin and trichohyalin are expressed in the avian and mammalian periderm, respectively. Scaffoldin forms the so-called periderm granules, which are histological markers of the periderm in birds. Epidermal differentiation cysteine-rich protein (EDCRP) and epidermal differentiation protein containing DPCC motifs (EDDM) are expressed in the avian subperiderm where they are supposed to undergo cross-linking via disulfide bonds. Furthermore, a histidine-rich epidermal differentiation protein and feather-type corneous beta-proteins, also known as beta-keratins, are expressed in the subperiderm. The accumulating evidence for roles of EDC genes in the development of the epidermis has implications on the evolutionary diversification of the skin in amniotes. Full article
(This article belongs to the Special Issue The 10th Anniversary of JDB: Feature Papers)
Show Figures

Figure 1

11 pages, 2483 KB  
Article
The Trichohyalin-Like Protein Scaffoldin Is Expressed in the Multilayered Periderm during Development of Avian Beak and Egg Tooth
by Veronika Mlitz, Marcela Hermann, Maria Buchberger, Erwin Tschachler and Leopold Eckhart
Genes 2021, 12(2), 248; https://doi.org/10.3390/genes12020248 - 10 Feb 2021
Cited by 11 | Viewed by 3240
Abstract
Scaffoldin, an S100 fused-type protein (SFTP) with high amino acid sequence similarity to the mammalian hair follicle protein trichohyalin, has been identified in reptiles and birds, but its functions are not yet fully understood. Here, we investigated the expression pattern of scaffoldin and [...] Read more.
Scaffoldin, an S100 fused-type protein (SFTP) with high amino acid sequence similarity to the mammalian hair follicle protein trichohyalin, has been identified in reptiles and birds, but its functions are not yet fully understood. Here, we investigated the expression pattern of scaffoldin and cornulin, a related SFTP, in the developing beaks of birds. We determined the mRNA levels of both SFTPs by reverse transcription polymerase chain reaction (RT-PCR) in the beak and other ectodermal tissues of chicken (Gallus gallus) and quail (Coturnix japonica) embryos. Immunohistochemical staining was performed to localize scaffoldin in tissues. Scaffoldin and cornulin were expressed in the beak and, at lower levels, in other embryonic tissues of both chickens and quails. Immunohistochemistry revealed scaffoldin in the peridermal compartment of the egg tooth, a transitory cornified protuberance (caruncle) on the upper beak which breaks the eggshell during hatching. Furthermore, scaffoldin marked a multilayered peridermal structure on the lower beak. The results of this study suggest that scaffoldin plays an evolutionarily conserved role in the development of the avian beak with a particular function in the morphogenesis of the egg tooth. Full article
(This article belongs to the Special Issue Genomics and Evolution of Sauropsid Traits in the Genomics Era)
Show Figures

Figure 1

Back to TopTop