Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = transactive response DNA-binding protein 43 kD

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2143 KB  
Article
Frontotemporal Lobar Degeneration Case with an N-Terminal TUBA4A Mutation Exhibits Reduced TUBA4A Levels in the Brain and TDP-43 Pathology
by Evelien Van Schoor, Mathieu Vandenbulcke, Valérie Bercier, Rik Vandenberghe, Julie van der Zee, Christine Van Broeckhoven, Markus Otto, Bernard Hanseeuw, Philip Van Damme, Ludo Van Den Bosch and Dietmar Rudolf Thal
Biomolecules 2022, 12(3), 440; https://doi.org/10.3390/biom12030440 - 12 Mar 2022
Cited by 10 | Viewed by 4513
Abstract
Recently, disease-associated variants of the TUBA4A gene were identified in patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here, we present the neuropathological report of a patient with the semantic variant of primary progressive aphasia with a family history of Parkinsonism, [...] Read more.
Recently, disease-associated variants of the TUBA4A gene were identified in patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here, we present the neuropathological report of a patient with the semantic variant of primary progressive aphasia with a family history of Parkinsonism, harboring a novel frameshift mutation c.187del (p.Arg64Glyfs*90) in TUBA4A. Immunohistochemistry showed abundant TAR DNA-binding protein 43 kDa (TDP-43) dystrophic neurite pathology in the frontal and temporal cortex and the dentate gyrus of the hippocampus, consistent with frontotemporal lobar degeneration (FTLD). The observed pathology pattern fitted best with that of FTLD-TDP Type C. qPCR showed the presence of mutant TUBA4A mRNA. However, no truncated TUBA4A was detected at the protein level. A decrease in total TUBA4A mRNA and protein levels suggests loss-of-function as a potential pathogenic mechanism. This report strengthens the idea that N-terminal TUBA4A mutations are associated with FTLD-TDP. These N-terminal mutations possibly exert their pathogenic effects through haploinsufficiency, contrary to C-terminal TUBA4A mutations which are thought to disturb the microtubule network via a dominant-negative mechanism. Full article
Show Figures

Figure 1

Back to TopTop