Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = trailer-to-dock assignment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 2616 KB  
Article
Adaptive Real-Time Planning of Trailer Assignments in High-Throughput Cross-Docking Terminals
by Tamás Bányai and Sebastian Trojahn
Algorithms 2025, 18(11), 679; https://doi.org/10.3390/a18110679 - 24 Oct 2025
Viewed by 702
Abstract
Cross-docking has emerged as a critical logistics strategy to reduce lead times, lower inventory levels, and enhance supply chain responsiveness. However, in high-throughput terminals, efficient coordination of inbound and outbound trailers remains a complex task, especially under uncertain and dynamically changing conditions. We [...] Read more.
Cross-docking has emerged as a critical logistics strategy to reduce lead times, lower inventory levels, and enhance supply chain responsiveness. However, in high-throughput terminals, efficient coordination of inbound and outbound trailers remains a complex task, especially under uncertain and dynamically changing conditions. We propose a practical framework that helps logistics terminals assign trailers to docks in real time. It links live sensor data with a mathematical optimization model, so that the system can quickly adjust trailer plans when traffic or workload changes. Real-time data from IoT sensors, GPS, and operational records are preprocessed, enriched with predictive analytics, and used as input for a Mixed-Integer Linear Programming (MILP) model solved in rolling horizons. This enables the continuous reallocation of inbound and outbound trailers, ensuring synchronized flows and balanced dock utilization. Numerical experiments compare the adaptive approach with conventional first-come-first-served scheduling. Results show that average inbound dock utilization improves from 68% to 71%, while the share of periods with full utilization increases from 33.3% to 41.4%. Outbound utilization also rises from 57% to 62%. Moreover, trailer delays are significantly reduced, and the overall makespan shortens from 45 to 40 time slots. These findings confirm that adaptive, real-time trailer assignment can enhance efficiency, reliability, and resilience in cross-docking operations. The proposed framework thus bridges the gap between static optimization models and the operational requirements of modern, high-throughput logistics hubs. Full article
Show Figures

Figure 1

Back to TopTop