Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = tractogram

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6093 KiB  
Review
The Seven Deadly Sins of Measuring Brain Structural Connectivity Using Diffusion MRI Streamlines Fibre-Tracking
by Fernando Calamante
Diagnostics 2019, 9(3), 115; https://doi.org/10.3390/diagnostics9030115 - 6 Sep 2019
Cited by 70 | Viewed by 11992
Abstract
There is great interest in the study of brain structural connectivity, as white matter abnormalities have been implicated in many disease states. Diffusion magnetic resonance imaging (MRI) provides a powerful means to characterise structural connectivity non-invasively, by using a fibre-tracking algorithm. The most [...] Read more.
There is great interest in the study of brain structural connectivity, as white matter abnormalities have been implicated in many disease states. Diffusion magnetic resonance imaging (MRI) provides a powerful means to characterise structural connectivity non-invasively, by using a fibre-tracking algorithm. The most widely used fibre-tracking strategy is based on the step-wise generation of streamlines. Despite their popularity and widespread use, there are a number of practical considerations that must be taken into account in order to increase the robustness of streamlines tracking results, particularly when these methods are used to study brain structural connectivity, and the connectome. This review article describes what we consider the ‘seven deadly sins’ of mapping structural connections using diffusion MRI streamlines fibre-tracking, with particular emphasis on ‘sins’ that can be practically avoided and they can have an important impact in the results. It is shown that there are important ‘deadly sins’ to be avoided at every step of the pipeline, such as during data acquisition, during data modelling to estimate local fibre architecture, during the fibre-tracking process itself, and during quantification of the tracking results. The recommendations here are intended to inform users on potential important shortcomings of their current tracking protocols, as well as to guide future users on some of the key issues and decisions that must be faced when designing their processing pipelines. Full article
(This article belongs to the Special Issue Brain Imaging)
Show Figures

Figure 1

Back to TopTop