Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = topo-quantum symmetry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 267 KB  
Article
Categorical Nonstandard Analysis
by Hayato Saigo and Juzo Nohmi
Symmetry 2021, 13(9), 1573; https://doi.org/10.3390/sym13091573 - 26 Aug 2021
Cited by 1 | Viewed by 3001
Abstract
In the present paper, we propose a new axiomatic approach to nonstandard analysis and its application to the general theory of spatial structures in terms of category theory. Our framework is based on the idea of internal set theory, while we make use [...] Read more.
In the present paper, we propose a new axiomatic approach to nonstandard analysis and its application to the general theory of spatial structures in terms of category theory. Our framework is based on the idea of internal set theory, while we make use of an endofunctor U on a topos of sets S together with a natural transformation υ, instead of the terms as “standard”, “internal”, or “external”. Moreover, we propose a general notion of a space called U-space, and the category USpace whose objects are U-spaces and morphisms are functions called U-spatial morphisms. The category USpace, which is shown to be Cartesian closed, gives a unified viewpoint toward topological and coarse geometric structure. It will also be useful to further study symmetries/asymmetries of the systems with infinite degrees of freedom, such as quantum fields. Full article
(This article belongs to the Special Issue Quantum Fields and Off-Shell Sciences)
17 pages, 2563 KB  
Article
Topological Symmetry Transition between Toroidal and Klein Bottle Graphenic Systems
by Mihai V. Putz and Ottorino Ori
Symmetry 2020, 12(8), 1233; https://doi.org/10.3390/sym12081233 - 27 Jul 2020
Cited by 12 | Viewed by 4332
Abstract
In the current study, distance-based topological invariants, namely the Wiener number and the topological roundness index, were computed for graphenic tori and Klein bottles (named toroidal and Klein bottle fullerenes or polyhexes in the pre-graphene literature) described as closed graphs with N vertices [...] Read more.
In the current study, distance-based topological invariants, namely the Wiener number and the topological roundness index, were computed for graphenic tori and Klein bottles (named toroidal and Klein bottle fullerenes or polyhexes in the pre-graphene literature) described as closed graphs with N vertices and 3N/2 edges, with N depending on the variable length of the cylindrical edge LC of these nano-structures, which have a constant length LM of the Möbius zigzag edge. The presented results show that Klein bottle cubic graphs are topologically indistinguishable from toroidal lattices with the same size (N, LC, LM) over a certain threshold size LC. Both nano-structures share the same values of the topological indices that measure graph compactness and roundness, two key topological properties that largely influence lattice stability. Moreover, this newly conjectured topological similarity between the two kinds of graphs transfers the translation invariance typical of the graphenic tori to the Klein bottle polyhexes with size LCLC, making these graphs vertex transitive. This means that a traveler jumping on the nodes of these Klein bottle fullerenes is no longer able to distinguish among them by only measuring the chemical distances. This size-induced symmetry transition for Klein bottle cubic graphs represents a relevant topological effect influencing the electronic properties and the theoretical chemical stability of these two families of graphenic nano-systems. The present finding, nonetheless, provides an original argument, with potential future applications, that physical unification theory is possible, starting surprisingly from the nano-chemical topological graphenic space; thus, speculative hypotheses may be drawn, particularly relating to the computational topological unification (that is, complexification) of the quantum many-worlds picture (according to Everett’s theory) with the space-curvature sphericity/roundness of general relativity, as is also currently advocated by Wolfram’s language unification of matter-physical phenomenology. Full article
(This article belongs to the Section Chemistry: Symmetry/Asymmetry)
Show Figures

Graphical abstract

Back to TopTop