Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = tissueoid cell culture system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5055 KiB  
Article
Differences in the Central Energy Metabolism of Cancer Cells between Conventional 2D and Novel 3D Culture Systems
by Ryo Ikari, Ken-ichi Mukaisho, Susumu Kageyama, Masayuki Nagasawa, Shigehisa Kubota, Takahisa Nakayama, Shoko Murakami, Naoko Taniura, Hiroyuki Tanaka, Ryoji P. Kushima and Akihiro Kawauchi
Int. J. Mol. Sci. 2021, 22(4), 1805; https://doi.org/10.3390/ijms22041805 - 11 Feb 2021
Cited by 31 | Viewed by 4141
Abstract
The conventional two-dimensional (2D) culture is available as an in vitro experimental model. However, the culture system reportedly does not recapitulate the in vivo cancer microenvironment. We recently developed a tissueoid cell culture system using Cellbed, which resembles the loose connective tissue in [...] Read more.
The conventional two-dimensional (2D) culture is available as an in vitro experimental model. However, the culture system reportedly does not recapitulate the in vivo cancer microenvironment. We recently developed a tissueoid cell culture system using Cellbed, which resembles the loose connective tissue in living organisms. The present study performed 2D and three-dimensional (3D) culture using prostate and bladder cancer cell lines and a comprehensive metabolome analysis. Compared to 3D, the 2D culture had significantly lower levels of most metabolites. The 3D culture system did not impair mitochondrial function in the cancer cells and produce energy through the mitochondria simultaneously with aerobic glycolysis. Conversely, ATP production, biomass (nucleotides, amino acids, lipids and NADPH) synthesis and redox balance maintenance were conducted in 3D culture. In contrast, in 2D culture, biomass production was delayed due to the suppression of metabolic activity. The 3D metabolome analysis using the tissueoid cell culture system capable of in vivo cancer cell culture yielded results consistent with previously reported cancer metabolism theories. This system is expected to be an essential experimental tool in a wide range of cancer research fields, especially in preclinical stages while transitioning from in vitro to in vivo. Full article
(This article belongs to the Special Issue Development of Cell Culture Technology: Molecular Aspects and Beyond)
Show Figures

Figure 1

Back to TopTop