Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = tigcycline

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1124 KiB  
Article
Efflux Pumps and Different Genetic Contexts of tet(X4) Contribute to High Tigecycline Resistance in Escherichia fergusonii from Pigs
by Junlin Wang, Xiulin Wan, Hecheng Meng, Rikke Heidemann Olsen, Xun Chen and Lili Li
Int. J. Mol. Sci. 2023, 24(8), 6923; https://doi.org/10.3390/ijms24086923 - 8 Apr 2023
Cited by 1 | Viewed by 2119
Abstract
Tigecycline is a last-resort antibiotic for the treatment of infections caused by multidrug-resistant bacteria. The emergence of plasmid-mediated tigecycline resistance genes is posing a serious threat to food safety and human health and has attracted worldwide attention. In this study, we characterized six [...] Read more.
Tigecycline is a last-resort antibiotic for the treatment of infections caused by multidrug-resistant bacteria. The emergence of plasmid-mediated tigecycline resistance genes is posing a serious threat to food safety and human health and has attracted worldwide attention. In this study, we characterized six tigecycline-resistant Escherichia fergusonii strains from porcine nasal swab samples collected from 50 swine farms in China. All the E. fergusonii isolates were highly resistant to tigecycline with minimal inhibitory concentration (MIC) values of 16–32 mg/L, and all contained the tet(X4) gene. In addition, 13–19 multiple resistance genes were identified in these isolates, revealed by whole-genome sequencing analysis. The tet(X4) gene was identified as being located in two different genetic structures, hp-abh-tet(X4)-ISCR2 in five isolates and hp-abh-tet(X4)-ΔISCR2-ISEc57-IS26 in one isolate. The role of efflux pumps in tigecycline resistance was evaluated by using inhibitor carbonyl cyanide 3-chlorophenylhydrazone (CCCP). The MIC values of tigecycline showed a 2- to 4-fold reduction in the presence of CCCP, indicating the involvement of active efflux pumps in tigecycline resistance in E. fergusonii. The tet(X4) gene was found to be transferable to Escherichia coli J53 by conjugation and resulted in the acquisition of tigcycline resistances in the transconjugants. Whole-genome multilocus sequence typing (wgMLST) and phylogenetic analysis showed a close relationship of five isolates originating from different pig farms, suggesting the transmission of tet(X4)-positive E. fergusonii between farms. In conclusion, our findings suggest that E. fergusonii strains in pigs are reservoirs of a transferable tet(X4) gene and provide insights into the tigecycline resistance mechanism as well as the diversity and complexity of the genetic context of tet(X4) in E. fergusonii. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

10 pages, 2382 KiB  
Article
Metformin Reverses tmexCD1-toprJ1- and tet(A)-Mediated High-Level Tigecycline Resistance in K. pneumoniae
by Xia Xiao, Quanmin Huan, Yanhu Huang, Yuan Liu, Ruichao Li, Xilan Xu and Zhiqiang Wang
Antibiotics 2022, 11(2), 162; https://doi.org/10.3390/antibiotics11020162 - 27 Jan 2022
Cited by 13 | Viewed by 3368
Abstract
Tigecycline (TIG) is one of the last effective options against multidrug resistance bacteria. Recently, the RND (resistance–nodulation–division) efflux pump gene cluster, tmexCD1-toprJ1, and the tetracycline-efflux pump tet(A) mutation were reported to mediate high level resistance to TIG in clinically important pathogens, [...] Read more.
Tigecycline (TIG) is one of the last effective options against multidrug resistance bacteria. Recently, the RND (resistance–nodulation–division) efflux pump gene cluster, tmexCD1-toprJ1, and the tetracycline-efflux pump tet(A) mutation were reported to mediate high level resistance to TIG in clinically important pathogens, weakening the efficacy of TIG. In this study, we report the potent synergistic effect of the antidiabetic drug metformin in combination with TIG against tet(A) mutant and tmexCD1-toprJ1 positive K. pneumoniae. The fractional inhibitory concentration index (FICI) of TIG and metformin were less than 0.05 for all the tested isolates. The time–kill curve assay showed that the combination of TIG and metformin exhibited much better antimicrobial effect than TIG alone. The synergistic effect was also confirmed in vivo using a well-studied Galleria mellonella larvae model. Mechanistic studies demonstrated that metformin disrupted the important component of proton motive force, the electric potential (Δψ) and the function of efflux pump, thereby increasing the intracellular concentration of TIG. This finding revealed that metformin might be a possible adjuvant of TIG for combating with superbugs carrying the tet(A) mutant and tmexCD1-toprJ1 genes. Full article
(This article belongs to the Special Issue Discovery and Development of Novel Antibacterial Agents)
Show Figures

Figure 1

Back to TopTop