Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = thoraco-abdominal displacements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2153 KB  
Article
Fusing Prediction and Perception: Adaptive Kalman Filter-Driven Respiratory Gating for MR Surgical Navigation
by Haoliang Li, Shuyi Wang, Jingyi Hu, Tao Zhang and Yueyang Zhong
Sensors 2026, 26(2), 405; https://doi.org/10.3390/s26020405 - 8 Jan 2026
Viewed by 191
Abstract
Background: Respiratory-induced target displacement remains a major challenge for achieving accurate and safe augmented-reality-guided thoracoabdominal percutaneous puncture. Existing approaches often suffer from system latency, dependence on intraoperative imaging, or the absence of intelligent timing assistance; Methods: We developed a mixed-reality (MR) surgical navigation [...] Read more.
Background: Respiratory-induced target displacement remains a major challenge for achieving accurate and safe augmented-reality-guided thoracoabdominal percutaneous puncture. Existing approaches often suffer from system latency, dependence on intraoperative imaging, or the absence of intelligent timing assistance; Methods: We developed a mixed-reality (MR) surgical navigation system that incorporates Adaptive Kalman-filter-based respiratory prediction module and visual gating cues. The system was evaluated using a dynamic respiratory motion simulation platform. The Kalman filter performs real-time state estimation and short-term prediction of optically tracked respiratory motion, enabling simultaneous compensation for MR model drift and forecasting of the end-inhalation window to trigger visual guidance; Results: Compared with the uncompensated condition, the proposed system reduced dynamic registration error from (3.15 ± 1.23) mm to (2.11 ± 0.58) mm (p < 0.001). Moreover, the predicted guidance window occurred approximately 142 ms in advance with >92% accuracy, providing preparation time for needle insertion; Conclusions: The integrated MR system effectively suppresses respiratory-induced model drift and offers intelligent timing guidance for puncture execution. Full article
Show Figures

Figure 1

18 pages, 5175 KB  
Article
Breathing Chest Wall Kinematics Assessment through a Single Digital Camera: A Feasibility Study
by Nunzia Molinaro, Emiliano Schena, Sergio Silvestri and Carlo Massaroni
Sensors 2023, 23(15), 6960; https://doi.org/10.3390/s23156960 - 5 Aug 2023
Cited by 4 | Viewed by 2849
Abstract
The identification of respiratory patterns based on the movement of the chest wall can assist in monitoring an individual’s health status, particularly those with neuromuscular disorders, such as hemiplegia and Duchenne muscular dystrophy. Thoraco-abdominal asynchrony (TAA) refers to the lack of coordination between [...] Read more.
The identification of respiratory patterns based on the movement of the chest wall can assist in monitoring an individual’s health status, particularly those with neuromuscular disorders, such as hemiplegia and Duchenne muscular dystrophy. Thoraco-abdominal asynchrony (TAA) refers to the lack of coordination between the rib cage and abdominal movements, characterized by a time delay in their expansion. Motion capture systems, like optoelectronic plethysmography (OEP), are commonly employed to assess these asynchronous movements. However, alternative technologies able to capture chest wall movements without physical contact, such as RGB digital cameras and time-of-flight digital cameras, can also be utilized due to their accessibility, affordability, and non-invasive nature. This study explores the possibility of using a single RGB digital camera to record the kinematics of the thoracic and abdominal regions by placing four non-reflective markers on the torso. In order to choose the positions of these markers, we previously investigated the movements of 89 chest wall landmarks using OEP. Laboratory tests and volunteer experiments were conducted to assess the viability of the proposed system in capturing the kinematics of the chest wall and estimating various time-related respiratory parameters (i.e., fR, Ti, Te, and Ttot) as well as TAA indexes. The results demonstrate a high level of agreement between the detected chest wall kinematics and the reference data. Furthermore, the system shows promising potential in estimating time-related respiratory parameters and identifying phase shifts indicative of TAA, thus suggesting its feasibility in detecting abnormal chest wall movements without physical contact with a single RGB camera. Full article
(This article belongs to the Collection Biomedical Imaging and Sensing)
Show Figures

Figure 1

22 pages, 485 KB  
Review
Optoelectronic Plethysmography has Improved our Knowledge of Respiratory Physiology and Pathophysiology
by Isabella Romagnoli, Barbara Lanini, Barbara Binazzi, Roberto Bianchi, Claudia Coli, Loredana Stendardi, Francesco Gigliotti and Giorgio Scano
Sensors 2008, 8(12), 7951-7972; https://doi.org/10.3390/s8127951 - 5 Dec 2008
Cited by 30 | Viewed by 17046
Abstract
It is well known that the methods actually used to track thoraco-abdominal volume displacement have several limitations. This review evaluates the clinical usefulness of measuring chest wall kinematics by optoelectronic plethysmography [OEP]. OEP provides direct measurements (both absolute and its variations) of the [...] Read more.
It is well known that the methods actually used to track thoraco-abdominal volume displacement have several limitations. This review evaluates the clinical usefulness of measuring chest wall kinematics by optoelectronic plethysmography [OEP]. OEP provides direct measurements (both absolute and its variations) of the volume of the chest wall and its compartments, according to the model of Ward and Macklem, without requiring calibration or subject cooperation. The system is non invasive and does not require a mouthpiece or nose-clip which may modify the pattern of breathing, making the subject aware of his breathing. Also, the precise assessment of compartmental changes in chest wall volumes, combined with pressure measurements, provides a detailed description of the action and control of the different respiratory muscle groups and assessment of chest wall dynamics in a number of physiological and clinical experimental conditions. Full article
(This article belongs to the Special Issue State-of-the-Art Sensors Technology in Italy)
Show Figures

Back to TopTop