Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = thioltransferase (glutaredoxin)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1299 KB  
Review
Regulation of Retroviral and SARS-CoV-2 Protease Dimerization and Activity through Reversible Oxidation
by David A. Davis, Haydar Bulut, Prabha Shrestha, Hiroaki Mitsuya and Robert Yarchoan
Antioxidants 2022, 11(10), 2054; https://doi.org/10.3390/antiox11102054 - 18 Oct 2022
Cited by 3 | Viewed by 2542
Abstract
Most viruses encode their own proteases to carry out viral maturation and these often require dimerization for activity. Studies on human immunodeficiency virus type 1 (HIV-1), type 2 (HIV-2) and human T-cell leukemia virus (HTLV-1) proteases have shown that the activity of these [...] Read more.
Most viruses encode their own proteases to carry out viral maturation and these often require dimerization for activity. Studies on human immunodeficiency virus type 1 (HIV-1), type 2 (HIV-2) and human T-cell leukemia virus (HTLV-1) proteases have shown that the activity of these proteases can be reversibly regulated by cysteine (Cys) glutathionylation and/or methionine oxidation (for HIV-2). These modifications lead to inhibition of protease dimerization and therefore loss of activity. These changes are reversible with the cellular enzymes, glutaredoxin or methionine sulfoxide reductase. Perhaps more importantly, as a result, the maturation of retroviral particles can also be regulated through reversible oxidation and this has been demonstrated for HIV-1, HIV-2, Mason-Pfizer monkey virus (M-PMV) and murine leukemia virus (MLV). More recently, our group has learned that SARS-CoV-2 main protease (Mpro) dimerization and activity can also be regulated through reversible glutathionylation of Cys300. Overall, these studies reveal a conserved way for viruses to regulate viral polyprotein processing particularly during oxidative stress and reveal novel targets for the development of inhibitors of dimerization and activity of these important viral enzyme targets. Full article
(This article belongs to the Special Issue Glutaredoxin and Glutathione)
Show Figures

Figure 1

30 pages, 6357 KB  
Review
Glutathione and Glutaredoxin in Redox Regulation and Cell Signaling of the Lens
by Marjorie F. Lou
Antioxidants 2022, 11(10), 1973; https://doi.org/10.3390/antiox11101973 - 1 Oct 2022
Cited by 47 | Viewed by 3943
Abstract
The ocular lens has a very high content of the antioxidant glutathione (GSH) and the enzymes that can recycle its oxidized form, glutathione disulfide (GSSG), for further use. It can be synthesized in the lens and, in part, transported from the neighboring anterior [...] Read more.
The ocular lens has a very high content of the antioxidant glutathione (GSH) and the enzymes that can recycle its oxidized form, glutathione disulfide (GSSG), for further use. It can be synthesized in the lens and, in part, transported from the neighboring anterior aqueous humor and posterior vitreous body. GSH is known to protect the thiols of the structural lens crystallin proteins from oxidation by reactive oxygen species (ROS) so the lens can maintain its transparency for proper visual function. Age-related lens opacity or senile cataract is the major visual impairment in the general population, and its cause is closely associated with aging and a constant exposure to environmental oxidative stress, such as ultraviolet light and the metabolic end product, H2O2. The mechanism for senile cataractogenesis has been hypothesized as the results of oxidation-induced protein-thiol mixed disulfide formation, such as protein-S-S-glutathione and protein-S-S-cysteine mixed disulfides, which if not reduced in time, can change the protein conformation to allow cascading modifications of various kinds leading to protein–protein aggregation and insolubilization. The consequence of such changes in lens structural proteins is lens opacity. Besides GSH, the lens has several antioxidation defense enzymes that can repair oxidation damage. One of the specific redox regulating enzymes that has been recently identified is thioltransferase (glutaredoxin 1), which works in concert with GSH, to reduce the oxidative stress as well as to regulate thiol/disulfide redox balance by preventing protein-thiol mixed disulfide accumulation in the lens. This oxidation-resistant and inducible enzyme has multiple physiological functions. In addition to protecting structural proteins and metabolic enzymes, it is able to regulate the redox signaling of the cells during growth factor-stimulated cell proliferation and other cellular functions. This review article focuses on describing the redox regulating functions of GSH and the thioltransferase enzyme in the ocular lens. Full article
(This article belongs to the Special Issue Glutaredoxin and Glutathione)
Show Figures

Figure 1

18 pages, 1128 KB  
Review
Role of Glutaredoxin-1 and Glutathionylation in Cardiovascular Diseases
by Mannix Burns, Syed Husain Mustafa Rizvi, Yuko Tsukahara, David R. Pimentel, Ivan Luptak, Naomi M. Hamburg, Reiko Matsui and Markus M. Bachschmid
Int. J. Mol. Sci. 2020, 21(18), 6803; https://doi.org/10.3390/ijms21186803 - 16 Sep 2020
Cited by 37 | Viewed by 6230
Abstract
Cardiovascular diseases are the leading cause of death worldwide, and as rates continue to increase, discovering mechanisms and therapeutic targets become increasingly important. An underlying cause of most cardiovascular diseases is believed to be excess reactive oxygen or nitrogen species. Glutathione, the most [...] Read more.
Cardiovascular diseases are the leading cause of death worldwide, and as rates continue to increase, discovering mechanisms and therapeutic targets become increasingly important. An underlying cause of most cardiovascular diseases is believed to be excess reactive oxygen or nitrogen species. Glutathione, the most abundant cellular antioxidant, plays an important role in the body’s reaction to oxidative stress by forming reversible disulfide bridges with a variety of proteins, termed glutathionylation (GSylation). GSylation can alter the activity, function, and structure of proteins, making it a major regulator of cellular processes. Glutathione-protein mixed disulfide bonds are regulated by glutaredoxins (Glrxs), thioltransferase members of the thioredoxin family. Glrxs reduce GSylated proteins and make them available for another redox signaling cycle. Glrxs and GSylation play an important role in cardiovascular diseases, such as myocardial ischemia and reperfusion, cardiac hypertrophy, peripheral arterial disease, and atherosclerosis. This review primarily concerns the role of GSylation and Glrxs, particularly glutaredoxin-1 (Glrx), in cardiovascular diseases and the potential of Glrx as therapeutic agents. Full article
(This article belongs to the Special Issue S-Glutathionylation in Redox Protein Signaling and Health Outcomes)
Show Figures

Figure 1

Back to TopTop