Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = thin-walled liner

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3503 KiB  
Article
Finite Element Analysis Framework for Structural Safety Evaluation of Type IV Hydrogen Storage Vessel
by Gunwoo Kim, Hyewon Kim, Hanmin Park, Kyuhwan Park, Sujin Yoon, Hansu Lee, Seokjin Lee, Jonglyul Kim, Gyehyoung Yoo, Younggil Youn and Hansang Kim
Hydrogen 2025, 6(3), 44; https://doi.org/10.3390/hydrogen6030044 - 2 Jul 2025
Viewed by 294
Abstract
Type IV composite overwrapped pressure vessels (COPVs) store hydrogen at pressures up to 70 MPa and must meet stringent safety standards through physical testing. However, full-scale burst, plug torque, axial compression, impact, and drop tests are time-consuming and costly. This study proposes a [...] Read more.
Type IV composite overwrapped pressure vessels (COPVs) store hydrogen at pressures up to 70 MPa and must meet stringent safety standards through physical testing. However, full-scale burst, plug torque, axial compression, impact, and drop tests are time-consuming and costly. This study proposes a unified finite element analysis (FEA) workflow that replicates these mandatory tests and predicts failure behavior without physical prototypes. Axisymmetric and three-dimensional solid models with reduced-integration elements were constructed for the polyamide liner, aluminum boss, and carbon/epoxy composite. Burst simulations showed that increasing the hoop-to-axial stiffness ratio shifts peak stress to the cylindrical region, promoting a longitudinal rupture—considered structurally safer. Plug torque and axial load simulations revealed critical stresses at the boss–composite interface, which can be reduced through neck boss shaping and layup optimization. A localized impact with a 25 mm sphere generated significantly higher stress than a larger 180 mm impactor under equal energy. Drop tests confirmed that 45° oblique drops cause the most severe dome stresses due to thin walls and the lack of hoop support. The proposed workflow enables early-stage structural validation, supports cost-effective design optimization, and accelerates the development of safe hydrogen storage systems for automotive and aerospace applications. Full article
Show Figures

Figure 1

20 pages, 24517 KiB  
Article
Investigations of Thin-Walled Glass Fiber Reinforced Plastic Laminates with Sealing Function for Electric Motors
by Jan David Hübsch, Nils Meyer, Daniela Feldten, Christian Mittelstedt and Philipp Berendes
J. Compos. Sci. 2025, 9(4), 175; https://doi.org/10.3390/jcs9040175 - 3 Apr 2025
Viewed by 543
Abstract
This article presents, in detail, design considerations for a thin-walled glass fiber reinforced plastic (GFRP) liner on a fluid-cooled stator lamination of an electric motor. In addition to structural requirements due to the cooling fluid pressure, the GFRP liner needs to guarantee impermeability. [...] Read more.
This article presents, in detail, design considerations for a thin-walled glass fiber reinforced plastic (GFRP) liner on a fluid-cooled stator lamination of an electric motor. In addition to structural requirements due to the cooling fluid pressure, the GFRP liner needs to guarantee impermeability. Analytical considerations deriving from different coefficients of thermal expansion (CTEs) determine the two-layered laminate design. Empirical investigations show two innovative, simple, and, therefore, efficient test setups for the leakage of liquid media through a GFRP liner. The weeping investigations employ two different GFRP systems with four different configurations of interfiber failure (IFF) and, therefore, crack densities. The weeping investigations show that at least one ply in the laminate needs to be flawless regarding IFF cracks in order to guarantee the sealing function. Alternatively, a third sealing layer can be used. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

20 pages, 25243 KiB  
Article
The Designs and Testing of Biodegradable Energy-Absorbing Inserts for Enhanced Crashworthiness in Sports Helmets
by Paweł Kaczyński, Mateusz Skwarski, Anna Dmitruk, Piotr Makuła and Joanna Ludwiczak
Materials 2024, 17(17), 4407; https://doi.org/10.3390/ma17174407 - 6 Sep 2024
Cited by 1 | Viewed by 1188
Abstract
This article addresses manufacturing structures made via injection molding from biodegradable materials. The mentioned structures can be successfully used as energy-absorbing liners of all kinds of sports helmets, replacing the previously used expanded polystyrene. This paper is focused on injection technological tests and [...] Read more.
This article addresses manufacturing structures made via injection molding from biodegradable materials. The mentioned structures can be successfully used as energy-absorbing liners of all kinds of sports helmets, replacing the previously used expanded polystyrene. This paper is focused on injection technological tests and tensile tests (in quasi-static and dynamic conditions) of several composites based on a PLA matrix with the addition of other biodegradable softening agents, such as PBAT and TPS (the blends were prepared via melt blending using a screw extruder with mass compositions of 50:50, 30:70, and 15:85). Tensile tests showed a positive strain rate sensitivity of the mixtures and a dependence of the increase in the ratio of the dynamic to static yield stress on the increase in the share of the plastic component in the mixture. Technological tests showed that increasing the amount of the plasticizing additive by 35% (from 50% to 85%) results in a decrease in the minimal thickness of the thin-walled element that can be successfully injection molded by about 32% in the case of PLA/PBAT blends (from 0.22 mm to 0.15 mm) and by about 26% in the case of PLA/TPS blends (from 0.23 mm to 0.17 mm). Next, the thin-walled elements (dimensions of 55 × 55 × 20 mm) were manufactured and evaluated using a spring-loaded drop hammer. The 60 J impact energy was tested in accordance with the EN 1078 standard. The dynamic crushing test included checking the influence of the materials’ temperature (−20, 0, 20, and 40 °C) and the impact velocity. It was proven that the maximum deflection increases with increasing material temperature and an increase in the share of the plastic component in the mixture. The PLA15PBAT85 blend was selected as the most effective material in terms of its use as an energy-absorbing liner for sport helmets. Johnson–Cook and Cowper–Symonds material plasticizing models were constructed. Their use during dynamic FE simulation provided results that were in good agreement with those of the conducted experiment. Full article
(This article belongs to the Section Green Materials)
Show Figures

Figure 1

13 pages, 2699 KiB  
Article
Inspection of Liner Wall Thinning and Interface Debonding in Bimetallic Lined Pipes Using Pulsed Eddy Current Testing
by Weifan Chen, Xiaofeng Zhou, Baixi Liu, Zhiping Li, Zan Luo and Zhiyuan Xu
Materials 2024, 17(11), 2652; https://doi.org/10.3390/ma17112652 - 30 May 2024
Cited by 3 | Viewed by 1065
Abstract
Bimetallic lined pipe (BLP) has been increasingly used in offshore and subsea oil and gas structures, but how to identify the invisible inner defects such as liner wall thinning and interface debonding is a challenge for future development. A nondestructive testing (NDT) method [...] Read more.
Bimetallic lined pipe (BLP) has been increasingly used in offshore and subsea oil and gas structures, but how to identify the invisible inner defects such as liner wall thinning and interface debonding is a challenge for future development. A nondestructive testing (NDT) method based on pulsed eddy current testing (PECT) has been proposed to face these difficulties. The inspection of the BLP specimen (AISI1020 base tube and SS304 liner) is implemented from outside of the pipe by using a transmitter–receiver-type PECT probe consisting of two induction coils. By simplifying the BLP specimen to stratified conductive plates, the electromagnetic field interaction between the PECT probe and specimen is analytically modeled, and the probe inspection signals due to liner wall thinning and interface debonding are calculated. In order to highlight the weak response (in microvolts) from the liner, the inspection signals are subtracted by the signal, which is calculated in the case of only having a base tube, yielding differential PECT signals. The peak voltage of the differential signal is selected to characterize the liner wall thinning and interface debonding due to its distinguishable and linear variation. Experiment verification is also carried out on a double-walled specimen simulated by a combination of a Q235 casing pipe and SS304 tubes of different sizes. The experimental results basically agree with the analytical predictions. The peak value of the PECT signal has an ascending and descending variation with the increase in the remaining liner wall thickness and debonding gap, respectively, while the negative peak value shows opposite changes. The peak value exhibits a larger sensitivity than the negative peak value. The proposed method shows potential promise in practical applications for the evaluation of the inner defects in BLP lines. Full article
(This article belongs to the Special Issue Sensing and Monitoring Technologies in Composite Materials)
Show Figures

Figure 1

23 pages, 12582 KiB  
Article
Buckling Behavior of Thin-Walled Stainless-Steel Lining Wrapped in Water-Supply Pipe under Negative Pressure
by Chunqing Lu, Samuel T. Ariaratnam, Xuefeng Yan, Baosong Ma, Yahong Zhao and Weigang Xiang
Appl. Sci. 2021, 11(15), 6781; https://doi.org/10.3390/app11156781 - 23 Jul 2021
Cited by 9 | Viewed by 3582
Abstract
This paper presents a study about the buckling behavior of thin stainless-steel lining (SSL) for trenchless repair of urban water supply networks under negative pressure. The critical buckling pressure and displacement (p–δ) curves, temperature changing curves, hoop and axial strain of [...] Read more.
This paper presents a study about the buckling behavior of thin stainless-steel lining (SSL) for trenchless repair of urban water supply networks under negative pressure. The critical buckling pressure and displacement (p–δ) curves, temperature changing curves, hoop and axial strain of the lining monitoring section and the strain changes with system pressure (p–ε) of the lining under the action of different diameters, different lining wall thickness and different ventilation modes were obtained through five groups of full-scale tests. The variation principles of the post-buckling pressure and the reduction regularity of the flowing section of the lining were further investigated. By comparing different pipeline buckling models and introducing thin-shell theory, the buckling model of liner supported by existing pipe was established. The comparison between the test results and thin-shell theory indicates that one of the significances of the enhancement coefficient k value is to change the constraint condition of the aspect ratio, l/R, thus increasing the critical buckling pressure of the lining. Finally, an improved lining buckling prediction model (enhancement model) is presented. A previous test is used as a case study with the results showing that the enhanced model is able to predict critical buckling pressure and lobe-starting amount of the liner, which can provide guidance for trenchless restoration of the liner with thin-walled stainless steel. Full article
(This article belongs to the Topic Advances on Structural Engineering)
Show Figures

Figure 1

15 pages, 6377 KiB  
Article
Extrusion Characteristics of Thin Walled Tubes for Catheters Using Thermoplastic Elastomer
by Soonmo Cho, Euntaek Lee, Seunggi Jo, Gyu Man Kim and Woojin Kim
Polymers 2020, 12(8), 1628; https://doi.org/10.3390/polym12081628 - 22 Jul 2020
Cited by 24 | Viewed by 6184
Abstract
As the market for minimally invasive surgery has grown, the demand for high-precision and high-performance catheters has increased. Catheters for the diagnosis and treatment of cardiovascular or cerebrovascular disease mainly use a braided wire tube with a polymer inner liner and outer jacket [...] Read more.
As the market for minimally invasive surgery has grown, the demand for high-precision and high-performance catheters has increased. Catheters for the diagnosis and treatment of cardiovascular or cerebrovascular disease mainly use a braided wire tube with a polymer inner liner and outer jacket to improve the pushability and trackability. The outer jacket should have an accurate inner and outer diameter and while maintaining a wall thickness of 150 µm or less. In this study, we designed and manufactured a tip and die capable of extruding an outer jacket with a wall thickness of 150 µm or less using a medical thermoplastic elastomer for manufacturing 8Fr (2.64 mm diameter) thin-walled tubes. The ovality and inner/outer diameters of the tube were studied according to changes in the screw speed (mass flow rate), puller speed, air pressure applied to the lumen, and distance between the quench and head, which are the main variables of microextrusion processes. The screw speed (mass flow rate), puller speed, and air pressure affected the inner/outer diameter of the tube, with screw speed and puller speed having the largest influence on diameter. The air pressure and distance between quench and head had the greatest influence on ovality. The results show the effect of different processing parameters on the characteristics of the extruded tube, which will help to establish a stable extrusion process for the manufacture of outer jackets for braided catheter shafts. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

22 pages, 12660 KiB  
Article
An Investigation on a Quantitative Tomographic SHM Technique for a Containment Liner Plate in a Nuclear Power Plant with Guided Wave Mode Selection
by Yonghee Lee and Younho Cho
Sensors 2019, 19(12), 2819; https://doi.org/10.3390/s19122819 - 24 Jun 2019
Cited by 12 | Viewed by 4525
Abstract
The containment liner plate (CLP) in a nuclear power plant is the most critical part of the structure of a power plant, as it prevents the radioactive contamination of the surrounding area. This paper presents feasibility of structural health monitoring (SHM) and an [...] Read more.
The containment liner plate (CLP) in a nuclear power plant is the most critical part of the structure of a power plant, as it prevents the radioactive contamination of the surrounding area. This paper presents feasibility of structural health monitoring (SHM) and an elastic wave tomography method based on ultrasonic guided waves (GW), for evaluating the integrity of CLP. It aims to check the integrity for a dynamic response to a damaged isotropic structure. The proposed SHM technique relies on sensors and, therefore, it can be placed on the structure permanently and can monitor either passively or actively. For applying this method, a suitable guided wave mode tuning is required to verify wave propagation. A finite element analysis (FEA) is performed to figure out the suitable GW mode for a CLP by considering geometric and material condition. Furthermore, elastic wave tomography technique is modified to evaluate the CLP condition and its visualization. A modified reconstruction algorithm for the probabilistic inspection of damage tomography algorithm is used to quantify corrosion defects in the CLP. The location and shape of the wall-thinning defects are successfully obtained by using elastic GW based SHM. Making full use of verified GW mode to Omni-directional transducer, it can be expected to improve utilization of the SHM based evaluation technique for CLP. Full article
Show Figures

Figure 1

Back to TopTop