Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = thermoase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 14356 KB  
Article
Spent Hen Protein Hydrolysate with Good Gastrointestinal Stability and Permeability in Caco-2 Cells Shows Antihypertensive Activity in SHR
by Hongbing Fan, Wenlin Yu, Wang Liao and Jianping Wu
Foods 2020, 9(10), 1384; https://doi.org/10.3390/foods9101384 - 1 Oct 2020
Cited by 37 | Viewed by 4912
Abstract
Spent hens are a major byproduct of the egg industry but are rich in muscle proteins that can be enzymatically transformed into bioactive peptides. The present study aimed to develop a spent hen muscle protein hydrolysate (SPH) with antihypertensive activity. Spent hen muscle [...] Read more.
Spent hens are a major byproduct of the egg industry but are rich in muscle proteins that can be enzymatically transformed into bioactive peptides. The present study aimed to develop a spent hen muscle protein hydrolysate (SPH) with antihypertensive activity. Spent hen muscle proteins were hydrolyzed by nine enzymes, either individually or in combination; 18 SPHs were assessed initially for their in vitro angiotensin-converting enzyme (ACE) inhibitory activity, and three SPHs, prepared by Protex 26L (SPH-26L), pepsin (SPH-P), and thermoase (SPH-T), showed promising activity and peptide yield. These three hydrolysates were further assessed for their angiotensin-converting enzyme 2 (ACE2) upregulating, antioxidant, and anti-inflammatory activities; only SPH-T upregulated ACE2 expression, while all three SPHs showed antioxidant and anti-inflammatory activities. During simulated gastrointestinal digestion, ACE2 upregulating, ACE inhibitory and antioxidant activities of SPH-T were not affected, but those of SPH-26L and SPH-P were reduced. ACE inhibitory activity of gastrointestinal-digested SPH-T was not affected after the permeability study in Caco-2 cells, while ACE2 upregulating, antioxidant and anti-inflammatory activities were improved; nine novel peptides with five–eight amino acid residues were identified from the Caco-2 permeate. Among these three hydrolysates, only SPH-T reduced blood pressure significantly when given orally at a daily dose of 1000 mg/kg body weight to spontaneously hypertensive rats. SPH-T can be developed into a promising functional food ingredient against hypertension, contributing to a more sustainable utilization for spent hens while generating extra revenue for the egg industry. Full article
(This article belongs to the Special Issue Proteins and Bioactive Peptides in High Protein Content Foods)
Show Figures

Graphical abstract

17 pages, 881 KB  
Article
Thermoase-Derived Flaxseed Protein Hydrolysates and Membrane Ultrafiltration Peptide Fractions Have Systolic Blood Pressure-Lowering Effects in Spontaneously Hypertensive Rats
by Ifeanyi D. Nwachukwu, Abraham T. Girgih, Sunday A. Malomo, John O. Onuh and Rotimi E. Aluko
Int. J. Mol. Sci. 2014, 15(10), 18131-18147; https://doi.org/10.3390/ijms151018131 - 9 Oct 2014
Cited by 46 | Viewed by 6727
Abstract
Thermoase-digested flaxseed protein hydrolysate (FPH) samples and ultrafiltration membrane-separated peptide fractions were initially evaluated for in vitro inhibition of angiotensin I-converting enzyme (ACE) and renin activities. The two most active FPH samples and their corresponding peptide fractions were subsequently tested for in vivo [...] Read more.
Thermoase-digested flaxseed protein hydrolysate (FPH) samples and ultrafiltration membrane-separated peptide fractions were initially evaluated for in vitro inhibition of angiotensin I-converting enzyme (ACE) and renin activities. The two most active FPH samples and their corresponding peptide fractions were subsequently tested for in vivo antihypertensive activity in spontaneously hypertensive rats (SHR). The FPH produced with 3% thermoase digestion showed the highest ACE- and renin-inhibitory activities. Whereas membrane ultrafiltration resulted in significant (p < 0.05) increases in ACE inhibition by the <1 and 1–3 kDa peptides, only a marginal improvement in renin-inhibitory activity was observed for virtually all the samples after membrane ultrafiltration. The FPH samples and membrane fractions were also effective in lowering systolic blood pressure (SBP) in SHR with the largest effect occurring after oral administration (200 mg/kg body weight) of the 1–3 kDa peptide fraction of the 2.5% FPH and the 3–5 kDa fraction of the 3% FPH. Such potent SBP-lowering capacity indicates the potential of flaxseed protein-derived bioactive peptides as ingredients for the formulation of antihypertensive functional foods and nutraceuticals. Full article
(This article belongs to the Special Issue Bioactive Proteins and Peptides Derived from Food)
Show Figures

Figure 1

Back to TopTop