Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = the pulsar kick problem

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 576 KB  
Article
Asymmetry in the Mean Free Path of Neutrinos in Hot Neutron Matter Under Strong Magnetic Fields
by Eduardo Bauer and Vanesa D. Olivera
Symmetry 2025, 17(6), 896; https://doi.org/10.3390/sym17060896 - 6 Jun 2025
Viewed by 797
Abstract
We investigate the asymmetry in the mean free path of massive neutrinos propagating through hot neutron matter under strong magnetic fields. The system is studied at temperatures up to 30 MeV and baryon densities up to ρ/ρ0 = 2.5, where [...] Read more.
We investigate the asymmetry in the mean free path of massive neutrinos propagating through hot neutron matter under strong magnetic fields. The system is studied at temperatures up to 30 MeV and baryon densities up to ρ/ρ0 = 2.5, where ρ0 is the nuclear saturation density. Magnetic field strengths up to B = 1018 G are considered. We analyze three different equations of state: one corresponding to a non-interacting Fermi gas and two derived from Skyrme-type interactions. The impact of a finite neutrino mass is assessed and found to be negligible within the energy range considered. The neutrino mean free path is computed for various angles of incidence with respect to the magnetic field direction, revealing a clear angular asymmetry. We show that quantum interference terms contribute significantly to this asymmetry, enhancing neutrino emission in directions perpendicular to the magnetic field at high densities. This result contrasts with previous expectations and suggests a revised interpretation of neutrino transport in magnetized nuclear matter. Full article
(This article belongs to the Special Issue Neutrino Physics and Symmetries)
Show Figures

Figure 1

Back to TopTop