Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = tea leaf diseases classification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 37584 KiB  
Article
Interpretable and Robust Ensemble Deep Learning Framework for Tea Leaf Disease Classification
by Ozan Ozturk, Beytullah Sarica and Dursun Zafer Seker
Horticulturae 2025, 11(4), 437; https://doi.org/10.3390/horticulturae11040437 - 19 Apr 2025
Viewed by 993
Abstract
Tea leaf diseases are among the most critical factors affecting the yield and quality of tea harvests. Due to climate change and widespread pesticide use in tea cultivation, these diseases have become more prevalent. As the demand for high-quality tea continues to rise, [...] Read more.
Tea leaf diseases are among the most critical factors affecting the yield and quality of tea harvests. Due to climate change and widespread pesticide use in tea cultivation, these diseases have become more prevalent. As the demand for high-quality tea continues to rise, tea has assumed an increasingly prominent role in the global economy, thereby rendering the continuous monitoring of leaf diseases essential for maintaining crop quality and ensuring sustainable production. In this context, developing innovative and sustainable agricultural policies is vital. Integrating artificial intelligence (AI)-based techniques with sustainable agricultural practices presents promising solutions. Ensuring that the outputs of these techniques are interpretable would also provide significant value for decision-makers, enhancing their applicability in sustainable agricultural practices. In this study, advanced deep learning architectures such as ResNet50, MobileNet, EfficientNetB0, and DenseNet121 were utilized to classify tea leaf diseases. Since low-resolution images and complex backgrounds caused significant challenges, an ensemble learning approach was proposed to combine the strengths of these models. The generalization performance of the ensemble model was comprehensively evaluated through statistical cross-validation. Additionally, Grad-CAM visualizations demonstrated a clear correspondence between diseased regions and disease types on the tea leaves. Thus, the models could detect diseases under varying conditions, highlighting their robustness. The ensemble model achieved high predictive performance, with precision, recall, and F1-score values of 95%, 94%, and 94% across folds. The overall classification accuracy reached 96%, with a maximum standard deviation of 2% across all dataset folds. Additionally, Grad-CAM visualizations demonstrated a clear correspondence between diseased regions and specific disease types on tea leaves, confirming the ability of models to detect diseases under varying conditions accurately and highlighting their robustness. Full article
(This article belongs to the Section Plant Pathology and Disease Management (PPDM))
Show Figures

Figure 1

17 pages, 3499 KiB  
Article
Study on the Tea Pest Classification Model Using a Convolutional and Embedded Iterative Region of Interest Encoding Transformer
by Baishao Zhan, Ming Li, Wei Luo, Peng Li, Xiaoli Li and Hailiang Zhang
Biology 2023, 12(7), 1017; https://doi.org/10.3390/biology12071017 - 17 Jul 2023
Cited by 6 | Viewed by 1936
Abstract
Tea diseases are one of the main causes of tea yield reduction, and the use of computer vision for classification and diagnosis is an effective means of tea disease management. However, the random location of lesions, high symptom similarity, and complex background make [...] Read more.
Tea diseases are one of the main causes of tea yield reduction, and the use of computer vision for classification and diagnosis is an effective means of tea disease management. However, the random location of lesions, high symptom similarity, and complex background make the recognition and classification of tea images difficult. Therefore, this paper proposes a tea disease IterationVIT diagnosis model that integrates a convolution and iterative transformer. The convolution consists of a superimposed bottleneck layer for extracting the local features of tea leaves. The iterative algorithm incorporates the attention mechanism and bilinear interpolation operation to obtain disease location information by continuously updating the region of interest in location information. The transformer module uses a multi-head attention mechanism for global feature extraction. A total of 3544 images of red leaf spot, algal leaf spot, bird’s eye disease, gray wilt, white spot, anthracnose, brown wilt, and healthy tea leaves collected under natural light were used as samples and input into the IterationVIT model for training. The results show that when the patch size is 16, the model performed better with an IterationVIT classification accuracy of 98% and F1 measure of 96.5%, which is superior to mainstream methods such as VIT, Efficient, Shuffle, Mobile, Vgg, etc. In order to verify the robustness of the model, the original images of the test set were blurred, noise- was added and highlighted, and then the images were input into the IterationVIT model. The classification accuracy still reached over 80%. When 60% of the training set was randomly selected, the classification accuracy of the IterationVIT model test set was 8% higher than that of mainstream models, with the ability to analyze fewer samples. Model generalizability was performed using three sets of plant leaf public datasets, and the experimental results were all able to achieve comparable levels of generalizability to the data in this paper. Finally, this paper visualized and interpreted the model using the CAM method to obtain the pixel-level thermal map of tea diseases, and the results show that the established IterationVIT model can accurately capture the location of diseases, which further verifies the effectiveness of the model. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

13 pages, 1555 KiB  
Article
Visual Tea Leaf Disease Recognition Using a Convolutional Neural Network Model
by Jing Chen, Qi Liu and Lingwang Gao
Symmetry 2019, 11(3), 343; https://doi.org/10.3390/sym11030343 - 7 Mar 2019
Cited by 166 | Viewed by 21893
Abstract
The rapid, recent development of image recognition technologies has led to the widespread use of convolutional neural networks (CNNs) in automated image classification and in the recognition of plant diseases. Aims: The aim of the present study was to develop a deep CNNs [...] Read more.
The rapid, recent development of image recognition technologies has led to the widespread use of convolutional neural networks (CNNs) in automated image classification and in the recognition of plant diseases. Aims: The aim of the present study was to develop a deep CNNs to identify tea plant disease types from leaf images. Materials: A CNNs model named LeafNet was developed with different sized feature extractor filters that automatically extract the features of tea plant diseases from images. DSIFT (dense scale-invariant feature transform) features are also extracted and used to construct a bag of visual words (BOVW) model that is then used to classify diseases via support vector machine(SVM) and multi-layer perceptron(MLP) classifiers. The performance of the three classifiers in disease recognition were then individually evaluated. Results: The LeafNet algorithm identified tea leaf diseases most accurately, with an average classification accuracy of 90.16%, while that of the SVM algorithm was 60.62% and that of the MLP algorithm was 70.77%. Conclusions: The LeafNet was clearly superior in the recognition of tea leaf diseases compared to the MLP and SVM algorithms. Consequently, the LeafNet can be used in future applications to improve the efficiency and accuracy of disease diagnoses in tea plants. Full article
Show Figures

Figure 1

Back to TopTop