Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = taxicabs GPS trajectories

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 669 KiB  
Article
FraudMove: Fraud Drivers Discovery Using Real-Time Trajectory Outlier Detection
by Eman O. Eldawy, Abdeltawab Hendawi, Mohammed Abdalla and Hoda M. O. Mokhtar
ISPRS Int. J. Geo-Inf. 2021, 10(11), 767; https://doi.org/10.3390/ijgi10110767 - 11 Nov 2021
Cited by 10 | Viewed by 2982
Abstract
Taxicabs and rideshare cars nowadays are equipped with GPS devices that enable capturing a large volume of traces. These GPS traces represent the moving behavior of the car drivers. Indeed, the real-time discovery of fraud drivers earlier is a demand for saving the [...] Read more.
Taxicabs and rideshare cars nowadays are equipped with GPS devices that enable capturing a large volume of traces. These GPS traces represent the moving behavior of the car drivers. Indeed, the real-time discovery of fraud drivers earlier is a demand for saving the passenger’s life and money. For this purpose, this paper proposes a novel time-based system, namely FraudMove, to discover fraud drivers in real-time by identifying outlier active trips. Mainly, the proposed FraudMove system computes the time of the most probable path of a trip. For trajectory outlier detection, a trajectory is considered an outlier trajectory if its time exceeds the time of this computed path by a specified threshold. FraudMove employs a tunable time window parameter to control the number of checks for detecting outlier trips. This parameter allows FraudMove to trade responsiveness with efficiency. Unlike other related works that wait until the end of a trip to indicate that it was an outlier, FraudMove discovers outlier trips instantly during the trip. Extensive experiments conducted on a real dataset confirm the efficiency and effectiveness of FraudMove in detecting outlier trajectories. The experimental results prove that FraudMove saves the response time of the outlier check process by up to 65% compared to the state-of-the-art systems. Full article
Show Figures

Figure 1

15 pages, 2553 KiB  
Article
City-Wide Traffic Flow Forecasting Using a Deep Convolutional Neural Network
by Shangyu Sun, Huayi Wu and Longgang Xiang
Sensors 2020, 20(2), 421; https://doi.org/10.3390/s20020421 - 11 Jan 2020
Cited by 60 | Viewed by 6895
Abstract
City-wide traffic flow forecasting is a significant function of the Intelligent Transport System (ITS), which plays an important role in city traffic management and public travel safety. However, this remains a very challenging task that is affected by many complex factors, such as [...] Read more.
City-wide traffic flow forecasting is a significant function of the Intelligent Transport System (ITS), which plays an important role in city traffic management and public travel safety. However, this remains a very challenging task that is affected by many complex factors, such as road network distribution and external factors (e.g., weather, accidents, and holidays). In this paper, we propose a deep-learning-based multi-branch model called TFFNet (Traffic Flow Forecasting Network) to forecast the short-term traffic status (flow) throughout a city. The model uses spatiotemporal traffic flow matrices and external factors as its input and then infers and outputs the future short-term traffic status (flow) of the whole road network. For modelling the spatial correlations of the traffic flows between current and adjacent road segments, we employ a multi-layer fully convolutional framework to perform cross-correlation calculation and extract the hierarchical spatial dependencies from local to global scales. Also, we extract the temporal closeness and periodicity of traffic flow from historical observations by constructing a high-dimensional tensor comprised of traffic flow matrices from three fragments of the time axis: recent time, near history, and distant history. External factors are also considered and trained with a fully connected neural network and then fused with the output of the main component of TFFNet. The multi-branch model is automatically trained to fit complex patterns hidden in the traffic flow matrices until reaching pre-defined convergent criteria via the back-propagation method. By constructing a rational model input and network architecture, TFFNet can capture spatial and temporal dependencies simultaneously from traffic flow matrices during model training and outperforms other typical traffic flow forecasting methods in the experimental dataset. Full article
(This article belongs to the Collection Positioning and Navigation)
Show Figures

Figure 1

23 pages, 12438 KiB  
Article
Spoofing Detection of Civilian UAVs Using Visual Odometry
by Masood Varshosaz, Alireza Afary, Barat Mojaradi, Mohammad Saadatseresht and Ebadat Ghanbari Parmehr
ISPRS Int. J. Geo-Inf. 2020, 9(1), 6; https://doi.org/10.3390/ijgi9010006 - 19 Dec 2019
Cited by 54 | Viewed by 4647
Abstract
Spoofing of Unmanned Aerial Vehicles (UAV) is generally carried out through spoofing of the UAV’s Global Positioning System (GPS) receiver. This paper presents a vision-based UAV spoofing detection method that utilizes Visual Odometry (VO). This method is independent of the other complementary sensors [...] Read more.
Spoofing of Unmanned Aerial Vehicles (UAV) is generally carried out through spoofing of the UAV’s Global Positioning System (GPS) receiver. This paper presents a vision-based UAV spoofing detection method that utilizes Visual Odometry (VO). This method is independent of the other complementary sensors and any knowledge or archived map and datasets. The proposed method is based on the comparison of relative sub-trajectory of the UAV from VO, with its absolute replica from GPS within a moving window along the flight path. The comparison is done using three dissimilarity measures including (1) Sum of Euclidian Distances between Corresponding Points (SEDCP), (2) angle distance and (3) taxicab distance between the Histogram of Oriented Displacements (HOD) of these sub-trajectories. This method can determine the time and location of UAV spoofing and bounds the drift error of VO. It can be used without any restriction in the usage environment and can be implemented in real-time applications. This method is evaluated on four UAV spoofing scenarios. The results indicate that this method is effective in the detection of UAV spoofing due to the Sophisticated Receiver-Based (SRB) GPS spoofing. This method can detect UAV spoofing in the long-range UAV flights when the changes in UAV flight direction is larger than 3° and in the incremental UAV spoofing with the redirection rate of 1°. Additionally, using SEDCP, the spoofing of the UAV, when there is no redirection and only the velocity of the UAV is changed, can be detected. The results show that SEDCP is more effective in the detection of UAV spoofing and fake GPS positions. Full article
(This article belongs to the Special Issue Unmanned Aerial Systems and Geoinformatics)
Show Figures

Figure 1

Back to TopTop