Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = symmetrical selenoesters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1686 KiB  
Article
Reversal of Multidrug Resistance by Symmetrical Selenoesters in Colon Adenocarcinoma Cells
by Bálint Rácz, Annamária Kincses, Krisztián Laczi, Gábor Rákhely, Enrique Domínguez-Álvarez and Gabriella Spengler
Pharmaceutics 2023, 15(2), 610; https://doi.org/10.3390/pharmaceutics15020610 - 11 Feb 2023
Cited by 2 | Viewed by 2089
Abstract
Recently, selenium containing derivatives have attracted more attention in medicinal chemistry. In the present work, the anticancer activity of symmetrical selenoesters was investigated by studying the reversal of efflux pump-related and apoptosis resistance in sensitive and resistant human colon adenocarcinoma cells expressing the [...] Read more.
Recently, selenium containing derivatives have attracted more attention in medicinal chemistry. In the present work, the anticancer activity of symmetrical selenoesters was investigated by studying the reversal of efflux pump-related and apoptosis resistance in sensitive and resistant human colon adenocarcinoma cells expressing the ABCB1 protein. The combined effect of the compounds with doxorubicin was demonstrated with a checkerboard assay. The ABCB1 inhibitory and the apoptosis-inducing effects of the derivatives were measured with flow cytometry. Whole transcriptome sequencing was carried out on Illumina platform upon the treatment of resistant cells with the most potent derivatives. One ketone and three methyl ester selenoesters showed synergistic or weak synergistic interaction with doxorubicin, respectively. Ketone selenoesters were the most potent ABCB1 inhibitors and apoptosis inducers. Nitrile selenoesters could induce moderate early and late apoptotic processes that could be explained by their ABCB1 modulating properties. The transcriptome analysis revealed that symmetrical selenoesters may influence the redox state of the cells and interfere with metastasis formation. It can be assumed that these symmetrical selenocompounds possess toxic, DNA-damaging effects due to the presence of two selenium atoms in the molecule, which may be augmented by the presence of symmetrical groups. Full article
Show Figures

Figure 1

25 pages, 4592 KiB  
Article
Pharmaceutical and Safety Profile Evaluation of Novel Selenocompounds with Noteworthy Anticancer Activity
by Małgorzata Anna Marć, Enrique Domínguez-Álvarez, Gniewomir Latacz, Agata Doroz-Płonka, Carmen Sanmartín, Gabriella Spengler and Jadwiga Handzlik
Pharmaceutics 2022, 14(2), 367; https://doi.org/10.3390/pharmaceutics14020367 - 6 Feb 2022
Cited by 15 | Viewed by 3135
Abstract
Prior studies have reported the potent and selective cytotoxic, pro-apoptotic, and chemopreventive activities of a cyclic selenoanhydride and of a series of selenoesters. Some of these selenium derivatives demonstrated multidrug resistance (MDR)-reversing activity in different resistant cancer cell lines. Thus, the aim of [...] Read more.
Prior studies have reported the potent and selective cytotoxic, pro-apoptotic, and chemopreventive activities of a cyclic selenoanhydride and of a series of selenoesters. Some of these selenium derivatives demonstrated multidrug resistance (MDR)-reversing activity in different resistant cancer cell lines. Thus, the aim of this study was to evaluate the pharmaceutical and safety profiles of these selected selenocompounds using alternative methods in silico and in vitro. One of the main tasks of this work was to determine both the physicochemical properties and metabolic stability of these selenoesters. The obtained results proved that these tested selenocompounds could become potential candidates for novel and safe anticancer drugs with good ADMET parameters. The most favorable selenocompounds turned out to be the phthalic selenoanhydride (EDA-A6), two ketone-containing selenoesters with a 4-chlorophenyl moiety (EDA-71 and EDA-73), and a symmetrical selenodiester with a pyridine ring and two selenium atoms (EDA-119). Full article
Show Figures

Graphical abstract

15 pages, 1955 KiB  
Article
Biofilm Eradication by Symmetrical Selenoesters for Food-Borne Pathogens
by Márta Nové, Annamária Kincses, Beatrix Szalontai, Bálint Rácz, Jessica M. A. Blair, Ana González-Prádena, Miguel Benito-Lama, Enrique Domínguez-Álvarez and Gabriella Spengler
Microorganisms 2020, 8(4), 566; https://doi.org/10.3390/microorganisms8040566 - 15 Apr 2020
Cited by 21 | Viewed by 3787
Abstract
Infections caused by Salmonella species and Staphylococcus aureus represent major health and food industry problems. Bacteria have developed many strategies to resist the antibacterial activity of antibiotics, leading to multidrug resistance (MDR). The over-expression of drug efflux pumps and the formation of biofilms [...] Read more.
Infections caused by Salmonella species and Staphylococcus aureus represent major health and food industry problems. Bacteria have developed many strategies to resist the antibacterial activity of antibiotics, leading to multidrug resistance (MDR). The over-expression of drug efflux pumps and the formation of biofilms based on quorum sensing (QS) can contribute the emergence of MDR. For this reason, the development of novel effective compounds to overcome resistance is urgently needed. This study focused on the antibacterial activity of nine symmetrical selenoesters (Se-esters) containing additional functional groups including oxygen esters, ketones, and nitriles against Gram-positive and Gram-negative bacteria. Firstly, the minimum inhibitory concentrations of the compounds were determined. Secondly, the interaction of compounds with reference antibiotics was examined. The efflux pump (EP) inhibitory properties of the compounds were assessed using real-time fluorimetry. Finally, the anti-biofilm and quorum sensing inhibiting effects of selenocompounds were determined. The methylketone and methyloxycarbonyl selenoesters were the more effective antibacterials compared to cyano selenoesters. The methyloxycarbonyl selenoesters (Se-E2 and Se-E3) showed significant biofilm and efflux pump inhibition, and a methyloxycarbonyl selenoester (Se-E1) exerted strong QS inhibiting effect. Based on results selenoesters could be promising compounds to overcome bacterial MDR. Full article
(This article belongs to the Special Issue Bacterial Biofilms and Its Eradication in Food Industry)
Show Figures

Figure 1

16 pages, 6075 KiB  
Article
Inhibition–Disruption of Candida glabrata Biofilms: Symmetrical Selenoesters as Potential Anti-Biofilm Agents
by María L. De la Cruz-Claure, Ariel A. Cèspedes-Llave, María T. Ulloa, Miguel Benito-Lama, Enrique Domínguez-Álvarez and Agatha Bastida
Microorganisms 2019, 7(12), 664; https://doi.org/10.3390/microorganisms7120664 - 9 Dec 2019
Cited by 11 | Viewed by 4288
Abstract
Candida glabrata is one of the most prevalent pathogenic Candida species in dental plaque on tooth surfaces. Candida biofilms exhibit an enhanced resistance against most antifungal agents. Thus, the development of alternative more potent and effective antimicrobials is required to overcome this resistance. [...] Read more.
Candida glabrata is one of the most prevalent pathogenic Candida species in dental plaque on tooth surfaces. Candida biofilms exhibit an enhanced resistance against most antifungal agents. Thus, the development of alternative more potent and effective antimicrobials is required to overcome this resistance. In this study, three novel fluorinated derivatives and nine selenoester compounds were screened as novel antifungal and antibiofilm agents against C. krusei, C. parapsilosis, and C. glabrata (N = 81 dental isolates). C. glabrata strains were susceptible only to fluorinated compounds while C. krusei, C. parapsilosis, and C. glabrata were susceptible to the action of the selenoesters. The evaluated symmetrical selenoester compounds presented very good antifungal activity against all the tested C. glabrata dental isolates (1–4 μg/mL of minimum inhibitory concentration-MIC). The most active compound (Se-5) was able to inhibit and disperse C. glabrata biofilms. These results demonstrated that selenoesters may be novel and promising biocide agents against C. glabrata clinical dental isolates. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

Back to TopTop