Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = sunflower pith

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3079 KiB  
Article
Mechanical Motion and Color Change of Humidity-Responsive Cellulose Nanocrystal Films from Sunflower Pith
by Shujie Wang, Yanan Liu, Zhengkun Tao, Yang Li, Jie Jiang and Ke Zheng
Polymers 2024, 16(22), 3199; https://doi.org/10.3390/polym16223199 - 18 Nov 2024
Viewed by 1390
Abstract
Nanocellulose has prompted extensive exploration of its applications in advanced functional materials, especially humidity-responsive materials. However, the sunflower pith (SP), a unique agricultural by-product with high cellulose and pectin content, is always ignored and wasted. This work applied sulfuric acid hydrolysis and sonication [...] Read more.
Nanocellulose has prompted extensive exploration of its applications in advanced functional materials, especially humidity-responsive materials. However, the sunflower pith (SP), a unique agricultural by-product with high cellulose and pectin content, is always ignored and wasted. This work applied sulfuric acid hydrolysis and sonication to sunflower pith to obtain nanocellulose and construct film materials with humidity-responsive properties. The SP nanoparticle (SP-NP) suspension could form a transparent film with stacked layers of laminated structure. Due to the tightly layered structure and expansion confinement effect, when humidity increases, the SP-NP film responds rapidly in just 0.5 s and completes a full flipping cycle in 4 s, demonstrating its excellent humidity-responsive capability. After removing hemicellulose and lignin, the SP cellulose nanocrystals (SPC-NC) could self-assemble into a chiral nematic structure in the film, displaying various structural colors based on different sonication times. The color of the SPC-NC film dynamically adjusted with changes in ambient humidity, exhibiting both functionality and aesthetics. This research provides a new perspective on the high-value utilization of sunflower pith while establishing a practical foundation for developing novel responsive cellulose-based materials. Full article
(This article belongs to the Special Issue Valorization of Polymers in Wood)
Show Figures

Figure 1

25 pages, 5552 KiB  
Article
Processing Hemp Shiv Particles for Building Applications: Alkaline Extraction for Concrete and Hot Water Treatment for Binderless Particle Board
by Maya-Sétan Diakité, Vincent Lequart, Alexandre Hérisson, Élise Chenot, Sébastien Potel, Nathalie Leblanc, Patrick Martin and Hélène Lenormand
Appl. Sci. 2024, 14(19), 8815; https://doi.org/10.3390/app14198815 - 30 Sep 2024
Viewed by 1888
Abstract
The building and construction sector is the largest emitter of greenhouse gases, accounting for 37% of global emissions. The production and use of materials such as cement, steel, and aluminum contribute significantly to this carbon footprint. Utilizing valorized agricultural by-products, such as hemp [...] Read more.
The building and construction sector is the largest emitter of greenhouse gases, accounting for 37% of global emissions. The production and use of materials such as cement, steel, and aluminum contribute significantly to this carbon footprint. Utilizing valorized agricultural by-products, such as hemp shiv and sunflower pith, in construction can enhance the insulating properties of materials and reduce their environmental impact by capturing CO2. Additionally, during the formulation process, molecules such as polyphenols and sugars are released, depending on process parameters like pH and temperature. In some cases, these releases can cause issues, such as delaying the hardening of agro-based concrete or serving as binding agents in binderless particle boards. This study focuses on the molecules released during the processing of these materials, with particular attention to the effects of pH and temperature, and the modifications to the plant particles resulting from these conditions. Physical, chemical, and morphological analyses were conducted on the treated hemp shiv particles (HS1 and HS2). No physical or morphological differences were observed between the samples. However, chemical differences, particularly in the lignin and soluble compound content, were noted and were linked to the release of plant substances during the process. Full article
Show Figures

Graphical abstract

16 pages, 1760 KiB  
Article
Lignocellulosic Biomasses from Agricultural Wastes Improved the Quality and Physicochemical Properties of Frying Oils
by Eman Ahmed, Ashraf Zeitoun, Gamal Hamad, Mohamed A. M. Zeitoun, Ahmed Taha, Sameh A. Korma and Tuba Esatbeyoglu
Foods 2022, 11(19), 3149; https://doi.org/10.3390/foods11193149 - 10 Oct 2022
Cited by 17 | Viewed by 3550
Abstract
In this work, the effects of using natural lignocellulosic-based adsorbents from sugarcane bagasse (SC), cornstalk piths (CP), and corn cob (CC) on the physicochemical properties and quality of fried oils were studied. The properties of lignocellulosic biomasses were examined using X-ray diffraction (XRD), [...] Read more.
In this work, the effects of using natural lignocellulosic-based adsorbents from sugarcane bagasse (SC), cornstalk piths (CP), and corn cob (CC) on the physicochemical properties and quality of fried oils were studied. The properties of lignocellulosic biomasses were examined using X-ray diffraction (XRD), scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR). Moreover, the changes in the physicochemical properties of fresh, fried oils (for 4, 8, 12, 16 and 20 h) and adsorbents-treated oils were examined. The XRD results revealed that SC and CP biomasses have more amorphous regions than CC biomass, which had the highest crystallinity percentage. The results also showed that lignocellulosic biomasses enhanced the quality of the used oils. SC was the most effective biomass to enhance the properties of the used sunflower oil. For instance, the acid value of oil samples fried for 20 h reduced from 0.63 ± 0.02 to 0.51 ± 0.02 mg KOH/g oil after SC biomass treatment. For the peroxide value, the SC biomass treatment reduced it from 9.45 ± 0.56 (fried oil for 20 h) to 6.91 ± 0.12 meq O2/kg. Similarly, SC biomass adsorbent reduced the p-Anisidine Value (p-AV) of the used oil (20 h) from 98.45 ± 6.31 to 77.92 ± 3.65. Moreover, SC adsorbents slightly improved the lightness of the used oils (20 h). In conclusion, natural lignocellulosic biomasses, particularly SC, could be utilized as natural adsorbents to improve the oil quality. The results obtained from this study could help in developing sustainable methods to regenerate used oils using natural and cheap adsorbents. Full article
Show Figures

Graphical abstract

12 pages, 6656 KiB  
Article
A Comparative Investigation on Structural and Chemical Differences between the Pith and Rind of Sunflower Stalk and Their Influences on Nanofibrillation Efficiency
by Lingyan Zhang, Wenting Ren, Fangqingxin Liu, Linmin Xia, Xiaomei Wu, Rilong Yang, Yan Yu and Xuexia Zhang
Polymers 2022, 14(5), 930; https://doi.org/10.3390/polym14050930 - 25 Feb 2022
Cited by 9 | Viewed by 3055
Abstract
The structure and chemical composition of cell walls play a vital role in the bioconversion and utilization of plants. In the present study, the cell wall structure and chemical composition of pith and rind from sunflower stalks were compared and correlated to their [...] Read more.
The structure and chemical composition of cell walls play a vital role in the bioconversion and utilization of plants. In the present study, the cell wall structure and chemical composition of pith and rind from sunflower stalks were compared and correlated to their nanofibrillation efficiency with ultrasonic treatment. Mild chemical pretreatment using 1% or 4% NaOH without any bleaching process were applied prior to ultrasonication nanofibrillation. Significant structural and chemical differences were demonstrated between the pith and rind, with the former exhibiting a much lower lignin and hemicellulose contents, higher pectin, much looser cell structure and higher cell wall porosity than the latter. Alkaline treatment alone was sufficient to eliminate most of the hemicellulose and pectin from stalk pith, whereas only partial removal of hemicellulose and lignin was achieved for the woody rind part. After 30 min of ultrasonic treatment, the stalk pith exhibited fully defibrillated fibrils with a continuous and entangled micro/nanofibrillated network, whereas numerous micron-sized fiber and fragments remained for the rind. The results indicated that stalk pith is less recalcitrant and easier to be fibrillated with ultrasonication than rind, which must be correlated to their distinct differences in both structure and chemical composition. Full article
Show Figures

Graphical abstract

19 pages, 1301 KiB  
Article
Multi-instrumental Analysis of Tissues of Sunflower Plants Treated with Silver(I) Ions – Plants as Bioindicators of Environmental Pollution
by Sona Krizkova, Pavel Ryant, Olga Krystofova, Vojtech Adam, Michaela Galiova, Miroslava Beklova, Petr Babula, Jozef Kaiser, Karel Novotny, Jan Novotny, Miroslav Liska, Radomir Malina, Josef Zehnalek, Jaromir Hubalek, Ladislav Havel and Rene Kizek
Sensors 2008, 8(1), 445-463; https://doi.org/10.3390/s8010445 - 24 Jan 2008
Cited by 83 | Viewed by 28821
Abstract
The aim of this work is to investigate sunflower plants response on stressinduced by silver(I) ions. The sunflower plants were exposed to silver(I) ions (0, 0.1, 0.5,and 1 mM) for 96 h. Primarily we aimed our attention to observation of basic physiologicalparameters. We [...] Read more.
The aim of this work is to investigate sunflower plants response on stressinduced by silver(I) ions. The sunflower plants were exposed to silver(I) ions (0, 0.1, 0.5,and 1 mM) for 96 h. Primarily we aimed our attention to observation of basic physiologicalparameters. We found that the treated plants embodied growth depression, coloured changes and lack root hairs. Using of autofluorescence of anatomical structures, such aslignified cell walls, it was possible to determine the changes of important shoot and rootstructures, mainly vascular bungles and development of secondary thickening. Thedifferences in vascular bundles organisation, parenchymatic pith development in the rootcentre and the reduction of phloem part of vascular bundles were well observable.Moreover with increasing silver(I) ions concentration the vitality of rhizodermal cellsdeclined; rhizodermal cells early necrosed and were replaced by the cells of exodermis.Further we employed laser induced breakdown spectroscopy for determination of spatialdistribution of silver(I) ions in tissues of the treated plants. The Ag is accumulated mainlyin near-root part of the sample. Moreover basic biochemical indicators of environmentalstress were investigated. The total content of proteins expressively decreased withincreasing silver(I) ions dose and the time of the treatment. As we compare the resultsobtained by protein analysis – the total protein contents in shoot as well as root parts – wecan assume on the transport of the proteins from the roots to shoots. This phenomenon canbe related with the cascade of processes connecting with photosynthesis. The secondbiochemical parameter, which we investigated, was urease activity. If we compared theactivity in treated plants with control, we found out that presence of silver(I) ions markedlyenhanced the activity of urease at all applied doses of this toxic metal. Finally we studiedthe effect of silver(I) ions on activity of urease in in vitro conditions. Full article
Show Figures

Back to TopTop