Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = sugar maple (SM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 842 KiB  
Article
Comparative Analysis of Milled Wood Lignins (MWLs) Isolated from Sugar Maple (SM) and Hot-Water Extracted Sugar Maple (ESM)
by Mangesh J. Goundalkar, Derek B. Corbett and Biljana M. Bujanovic
Energies 2014, 7(3), 1363-1375; https://doi.org/10.3390/en7031363 - 5 Mar 2014
Cited by 22 | Viewed by 7479
Abstract
To further elucidate the advantageous effects of hot-water extraction (HWE) on delignification, milled wood lignin (MWL) was isolated from sugar maple (SM) and from hot-water extracted sugar maple (ESM). Ball-milled wood was analyzed for particle size distribution (PSD) before and after dioxane:water (DW) [...] Read more.
To further elucidate the advantageous effects of hot-water extraction (HWE) on delignification, milled wood lignin (MWL) was isolated from sugar maple (SM) and from hot-water extracted sugar maple (ESM). Ball-milled wood was analyzed for particle size distribution (PSD) before and after dioxane:water (DW) extraction. The MWL samples were analyzed by analytical and spectral methods. The results indicated that the MWL isolated from SM and ESM was mainly released from the middle lamella (ML) and the secondary wall (SW), respectively. The cleavage of dibenzodioxocin (DB) and spirodienone (SD) lignin substructures during HWE is suggested. The removal of lignin during acetone:water (AW) extraction of hot-water extracted wood indicates that including an additional operation in a hardwood HWE-based biorefinery would be beneficial for processing of wood. Full article
(This article belongs to the Special Issue Biomass and Biofuels 2013)
Show Figures

17 pages, 606 KiB  
Article
Impact of Hot-Water Extraction on Acetone-Water Oxygen Delignification of Paulownia Spp. and Lignin Recovery
by Chen Gong and Biljana M. Bujanovic
Energies 2014, 7(2), 857-873; https://doi.org/10.3390/en7020857 - 19 Feb 2014
Cited by 25 | Viewed by 8435
Abstract
A hardwood-based biorefinery process starting with hot-water extraction (HWE) is recommended in order to remove most of the hemicelluloses/xylans before further processing. HWE may be followed by delignification in acetone/water in the presence of oxygen (AWO) for the production of cellulose and lignin. [...] Read more.
A hardwood-based biorefinery process starting with hot-water extraction (HWE) is recommended in order to remove most of the hemicelluloses/xylans before further processing. HWE may be followed by delignification in acetone/water in the presence of oxygen (AWO) for the production of cellulose and lignin. In this study, the HWE-AWO sequence was evaluated for its effectiveness at removing lignin from the fast-growing species Paulownia tomentosa (PT) and Paulownia elongata (PE), in comparison with the reference species, sugar maple (Acer saccharum, SM). HWE might lead to a remarkable increase in lignin accessibility, and as a result, a greater AWO delignification degree was observed for extracted PT, PE, and SM than for unextracted ones. Organosolv lignin was recovered from the spent liquor of AWO delignification of PT with/without prior HWE and characterized to evaluate the benefits of HWE on the lignin structure and purity. The lignin recovered from the spent liquor of HWE-AWO sequence is of higher purity and lighter color than that recovered from the AWO spent liquor. These properties along with low sulfur content are desirable for lignin high-value applications. Full article
(This article belongs to the Special Issue Biomass and Biofuels 2013)
Show Figures

Back to TopTop