Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = subspace-full space collaborative search

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 980 KB  
Article
An Improved Mantis Search Algorithm for Solving Optimization Problems
by Yanjiao Wang and Tongchao Dou
Biomimetics 2026, 11(2), 105; https://doi.org/10.3390/biomimetics11020105 - 2 Feb 2026
Abstract
The traditional mantis search algorithm (MSA) suffers from limitations such as slow convergence and a high likelihood of converging to local optima in complex optimization scenarios. This paper proposes an improved mantis search algorithm (IMSA) to overcome these issues. An adaptive probability conversion [...] Read more.
The traditional mantis search algorithm (MSA) suffers from limitations such as slow convergence and a high likelihood of converging to local optima in complex optimization scenarios. This paper proposes an improved mantis search algorithm (IMSA) to overcome these issues. An adaptive probability conversion factor is designed, which adaptively controls the proportion of individuals entering the search phase and the attack phase so that the algorithm can smoothly transition from large-scale global exploration to local fine search. In the search phase, a probability update strategy based on both subspace and full space is designed, significantly improving the adaptability of the algorithm to complex problems by dynamically adjusting the search range. The elite population screening mechanism, based on Euclidean distance and fitness double criteria, is introduced to provide dual guidance for the evolution direction of the algorithm. In the attack stage, the base vector adaptive probability selection mechanism is designed, and the algorithm’s pertinence in different optimization stages is enhanced by dynamically adjusting the base vector selection strategy. Finally, in the stage of sexual cannibalism, the directed random disturbance update method of inferior individuals is adopted, and the population is directly introduced through the non-greedy replacement strategy, which effectively overcomes the loss of population diversity. The experimental results of 29 test functions on the CEC2017 test set demonstrate that the IMSA exhibits significant advantages in convergence speed, calculation accuracy, and stability compared to the original MSA and the five best meta-heuristic algorithms. Full article
(This article belongs to the Section Biological Optimisation and Management)
Back to TopTop