Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = submerged laser peening

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 14704 KB  
Article
Improvement of Fatigue Strength in Additively Manufactured Aluminum Alloy AlSi10Mg via Submerged Laser Peening
by Hitoshi Soyama
Coatings 2024, 14(9), 1174; https://doi.org/10.3390/coatings14091174 - 11 Sep 2024
Cited by 1 | Viewed by 1824
Abstract
As the fatigue properties of as-built components of additively manufactured (AM) metals are considerably weaker than those of wrought metals because of their rougher surface, post-processing is necessary to improve the fatigue properties. To demonstrate the improvement in the fatigue properties of AM [...] Read more.
As the fatigue properties of as-built components of additively manufactured (AM) metals are considerably weaker than those of wrought metals because of their rougher surface, post-processing is necessary to improve the fatigue properties. To demonstrate the improvement in the fatigue properties of AM metals via post-processing methods, the fabrication of AlSi10Mg, i.e., PBF–LS/AlSi10Mg, through powder bed fusion (PBF) using laser sintering (LS) and its treatment via submerged laser peening (SLP), using a fiber laser and/or a Nd/YAG laser, was evaluated via plane bending fatigue tests. In SLP, laser ablation (LA) is generated by a pulsed laser and a bubble is generated after LA, which behaves like a cavitation bubble that is referred to as “laser cavitation (LC)”. In this paper, LA-dominated SLP is referred to as “laser treatment (LT)”, while LC collapse-dominated SLP is referred to as “laser cavitation peening (LCP)”, as the impact of LC collapse is used for peening. It was revealed that SLP using a fiber laser corresponded with LT rather than LCP. It was demonstrated that the fatigue strength at N = 107 was 85 MPa for LCP and 103 MPa for the combined process of blasting (B) + LT + LCP, whereas the fatigue strength of the as-built specimen was 54 MPa. Full article
(This article belongs to the Special Issue Laser Surface Engineering: Technologies and Applications)
Show Figures

Graphical abstract

16 pages, 7375 KB  
Article
Development of a Cavitation Generator Mimicking Pistol Shrimp
by Hitoshi Soyama, Mayu Tanaka, Takashi Takiguchi and Matsuo Yamamoto
Biomimetics 2024, 9(1), 47; https://doi.org/10.3390/biomimetics9010047 - 12 Jan 2024
Cited by 3 | Viewed by 4998
Abstract
Pistol shrimp generate cavitation bubbles. Cavitation impacts due to bubble collapses are harmful phenomena, as they cause severe damage to hydraulic machinery such as pumps and valves. However, cavitation impacts can be utilized for mechanical surface treatment to improve the fatigue strength of [...] Read more.
Pistol shrimp generate cavitation bubbles. Cavitation impacts due to bubble collapses are harmful phenomena, as they cause severe damage to hydraulic machinery such as pumps and valves. However, cavitation impacts can be utilized for mechanical surface treatment to improve the fatigue strength of metallic materials, which is called “cavitation peening”. Through conventional cavitation peening, cavitation is generated by a submerged water jet, i.e., a cavitating jet or a pulsed laser. The fatigue strength of magnesium alloy when treated by the pulsed laser is larger than that of the jet. In order to drastically increase the processing efficiency of cavitation peening, the mechanism of pistol shrimp (specifically when used to create a cavitation bubble), i.e., Alpheus randalli, was quantitatively investigated. It was found that a pulsed water jet generates a cavitation bubble when a shrimp snaps its claws. Furthermore, two types of cavitation generators were developed, namely, one that uses a pulsed laser and one that uses a piezo actuator, and this was achieved by mimicking a pistol shrimp. The generation of cavitation bubbles was demonstrated by using both types of cavitation generators: the pulsed laser and the piezo actuator. Full article
Show Figures

Graphical abstract

23 pages, 11989 KB  
Review
Laser Cavitation Peening: A Review
by Hitoshi Soyama and Yuka Iga
Appl. Sci. 2023, 13(11), 6702; https://doi.org/10.3390/app13116702 - 31 May 2023
Cited by 23 | Viewed by 3585
Abstract
During submerged laser peening using a pulsed laser, a bubble that behaves like cavitation is generated after laser ablation (LA). The bubble is referred to as laser cavitation (LC). The amplitude of the shockwave in water generated by LA is larger than that [...] Read more.
During submerged laser peening using a pulsed laser, a bubble that behaves like cavitation is generated after laser ablation (LA). The bubble is referred to as laser cavitation (LC). The amplitude of the shockwave in water generated by LA is larger than that of LC; however, the impact passing through the target metal during LC is larger than that of LA. LC impact can be utilized for peening at optimized conditions. Thus, submerged laser peening is referred to as “laser cavitation peening”, as the peening method using the cavitation impact is known as “cavitation peening”. The impact induced by a hemispherical bubble is more aggressive than that of a spherical bubble with a microjet. Laser cavitation peening can improve the fatigue strength of metallic materials by producing work-hardening and introducing compressive residual stress. Three-dimensional additively manufactured metals (3D metals) such as titanium alloy are attractive materials for aviation components and medical implants; however, the fatigue strength of as-built components is nearly half of that of bulk metals, and this is an obstacle for the applications of 3D metals. In the present study, published research papers are reviewed to identify the key factors of laser cavitation peening, with additional visualization of LC and data. Then, improvements in the fatigue strength of metallic materials, including 3D metals treated by laser cavitation peening, are summarized. Full article
Show Figures

Figure 1

14 pages, 6276 KB  
Article
Laser Cavitation Peening and Its Application for Improving the Fatigue Strength of Welded Parts
by Hitoshi Soyama
Metals 2021, 11(4), 531; https://doi.org/10.3390/met11040531 - 24 Mar 2021
Cited by 19 | Viewed by 3670
Abstract
During conventional submerged laser peening, the impact force induced by laser ablation is used to produce local plastic deformation pits to enhance metallic material properties, such as fatigue performance. However, a bubble, which behaves like a cavitation, is generated after laser ablation, known [...] Read more.
During conventional submerged laser peening, the impact force induced by laser ablation is used to produce local plastic deformation pits to enhance metallic material properties, such as fatigue performance. However, a bubble, which behaves like a cavitation, is generated after laser ablation, known as “laser cavitation.” On the contrary, in conventional cavitation peening, cavitation is generated by injecting a high-speed water jet into the water, and the impacts of cavitation collapses are utilized for mechanical surface treatment. In the present paper, a mechanical surface treatment mechanism using laser cavitation impact, i.e., “laser cavitation peening”, was investigated, and an improvement in fatigue strength from laser cavitation peening was demonstrated. The impact forces induced by laser ablation and laser cavitation collapse were evaluated with a polyvinylidene fluoride (PVDF) sensor and a submerged shockwave sensor, and the diameter of the laser cavitation was measured by observing a high-speed video taken with a camera. It was revealed that the impact of laser cavitation collapse was larger than that of laser ablation, and the peening effect was closely related to the volume of laser cavitation. Laser cavitation peening improved the fatigue strength of stainless-steel welds. Full article
(This article belongs to the Special Issue Surface Engineering of Metals and Alloys)
Show Figures

Graphical abstract

17 pages, 7951 KB  
Article
Comparison between Shot Peening, Cavitation Peening, and Laser Peening by Observation of Crack Initiation and Crack Growth in Stainless Steel
by Hitoshi Soyama
Metals 2020, 10(1), 63; https://doi.org/10.3390/met10010063 - 31 Dec 2019
Cited by 30 | Viewed by 6694
Abstract
The traditional technique used to modify the surface of a metallic material is shot peening; however, cavitation peening, a more recent technique in which shot is not used, was developed, and improvements in the fatigue strength of metallic materials were demonstrated. In order [...] Read more.
The traditional technique used to modify the surface of a metallic material is shot peening; however, cavitation peening, a more recent technique in which shot is not used, was developed, and improvements in the fatigue strength of metallic materials were demonstrated. In order to compare the fatigue properties introduced by shot peening with those introduced by cavitation peening, crack initiation and crack growth in specimens of austenitic stainless steel (Japanese Industrial Standards JIS SUS316L) treated using these techniques were investigated. With conventional cavitation peening, cavitation is produced by injecting a high speed water jet into water. In the case of submerged laser peening, bubbles are generated using a pulsed laser after laser ablation, and the impact produced when the bubbles collapse is larger than that due to laser ablation. Thus, in this study, cavitation peening using a water jet and submerged laser peening were investigated. To clarify the mechanisms whereby the fatigue strength is improved by these peening techniques, crack initiation and crack growth in specimens with and without treatment were examined by means of a K-decreasing test, where K is the stress intensity factor, and using a constant applied stress test using a load controlled plane bending fatigue tester. It was found that the improvement in crack initiation and the reduction in crack growth were roughly in a linear relationship, even though the specimens were treated using different peening methods. The results presented here show that the fatigue strength of SUS316L treated by these peening techniques is closely related to the reduction in crack growth, rather than crack initiation. Full article
(This article belongs to the Special Issue Advanced Surface Modification Technologies)
Show Figures

Graphical abstract

Back to TopTop