Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = stemazole

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2888 KiB  
Article
Stemazole Promotes Oligodendrocyte Precursor Cell Survival In Vitro and Remyelination In Vivo
by Yizi Zhu, Mingzhu Chen, Yubo Zhang and Mei Han
Int. J. Mol. Sci. 2022, 23(18), 10756; https://doi.org/10.3390/ijms231810756 - 15 Sep 2022
Cited by 2 | Viewed by 2201
Abstract
Maintaining the normal function of oligodendrocyte precursor cells (OPCs) and protecting OPCs from damage is the basis of myelin regeneration in multiple sclerosis (MS). In this paper, we investigated the effect of stemazole, a novel small molecule, on the promotion of oligodendrocyte precursor [...] Read more.
Maintaining the normal function of oligodendrocyte precursor cells (OPCs) and protecting OPCs from damage is the basis of myelin regeneration in multiple sclerosis (MS). In this paper, we investigated the effect of stemazole, a novel small molecule, on the promotion of oligodendrocyte precursor cell survival and remyelination. The results show that stemazole enhanced the survival rate and the number of clone formation in a dose-dependent manner and decreased the percentage of cell apoptosis. In particular, the number of cell clones was increased up to 6-fold (p < 0.001) in the stemazole group compared with the control group. In vivo, we assessed the effect of stemazole on recovering the motor dysfunction and demyelination induced by cuprizone (CPZ). The results show that stemazole promoted the recovery of motor dysfunction and the repair of myelin sheaths. Compared with the CPZ group, the stemazole group showed a 30.46% increase in the myelin area (p < 0.001), a 37.08% increase in MBP expression (p < 0.01), and a 1.66-fold increase in Olig2 expression (p < 0.001). Histologically, stemazole had a better effect than the positive control drugs. In conclusion, stemazole promoted OPC survival in vitro and remyelination in vivo, suggesting that this compound may be used as a therapeutic agent against demyelinating disease. Full article
(This article belongs to the Special Issue Neuropharmacology and Neurodegenerative Diseases)
Show Figures

Figure 1

18 pages, 2754 KiB  
Article
A Quantitative Proteomic Approach Explores the Possible Mechanisms by Which the Small Molecule Stemazole Promotes the Survival of Human Neural Stem Cells
by Mingzhu Chen, Yizi Zhu, Huajun Li, Yubo Zhang and Mei Han
Brain Sci. 2022, 12(6), 690; https://doi.org/10.3390/brainsci12060690 - 25 May 2022
Cited by 5 | Viewed by 2896
Abstract
Neurodegenerative disorders have become a serious healthcare problem worldwide and there is no efficacious cure. However, regulating the fate of stem cells is an effective way to treat these neurological diseases. In previous work, stemazole was reported to maintain the survival of human [...] Read more.
Neurodegenerative disorders have become a serious healthcare problem worldwide and there is no efficacious cure. However, regulating the fate of stem cells is an effective way to treat these neurological diseases. In previous work, stemazole was reported to maintain the survival of human neural stem cells in the absence of growth factors and to have therapeutic effects on neurodegenerative diseases. However, although it is a promising small molecule, the molecular mechanisms against apoptosis are ambiguous. In this study, tandem mass tag (TMT)-based proteomics were performed to obtain whole protein expression profiles of human neural stem cells in different groups under extreme conditions. Bioinformatics analysis based on protein–protein interaction (PPI) network construction, gene ontology (GO) and the Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment analysis were adopted to explore crucial proteins and possible pharmacological mechanisms. A total of 77 differentially expressed proteins were identified, comprising 38 upregulated proteins and 39 downregulated proteins. Combined with a diseases database of Alzheimer’s disease (AD), caspase-2 (CASP2), PKA C-alpha (PRKACA), fibronectin (FN1), large neutral amino acid transporter small subunit 1 (SLC7A5), which are involved in cell proliferation and apoptosis, this was further validated by enzyme activity assay and molecular docking, and regarded as putative targets regulated by stemazole. The present results give an insight into this small molecule and a better understanding for further elucidating the underlying mechanisms in the treatment of stem cells and neurodegenerative diseases. Full article
(This article belongs to the Section Molecular and Cellular Neuroscience)
Show Figures

Figure 1

16 pages, 2693 KiB  
Article
Uncovering the Pharmacological Mechanism of Stemazole in the Treatment of Neurodegenerative Diseases Based on a Network Pharmacology Approach
by Jing Zhang, Huajun Li, Yubo Zhang, Chaoran Zhao, Yizi Zhu and Mei Han
Int. J. Mol. Sci. 2020, 21(2), 427; https://doi.org/10.3390/ijms21020427 - 9 Jan 2020
Cited by 23 | Viewed by 5554
Abstract
Stemazole exerts potent pharmacological effects against neurodegenerative diseases and protective effects in stem cells. However, on the basis of the current understanding, the molecular mechanisms underlying the effects of stemazole in the treatment of Alzheimer’s disease and Parkinson’s disease have not been fully [...] Read more.
Stemazole exerts potent pharmacological effects against neurodegenerative diseases and protective effects in stem cells. However, on the basis of the current understanding, the molecular mechanisms underlying the effects of stemazole in the treatment of Alzheimer’s disease and Parkinson’s disease have not been fully elucidated. In this study, a network pharmacology-based strategy integrating target prediction, network construction, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and molecular docking was adopted to predict the targets of stemazole relevant to the treatment of neurodegenerative diseases and to further explore the involved pharmacological mechanisms. The majority of the predicted targets were highly involved in the mitogen-activated protein kinase (MAPK) signaling pathway. RAC-alpha serine/threonine-protein kinase (AKT1), caspase-3 (CASP3), caspase-8 (CASP8), mitogen-activated protein kinase 8 (MAPK8), and mitogen-activated protein kinase 14 (MAPK14) are the core targets regulated by stemazole and play a central role in its anti-apoptosis effects. This work provides a scientific basis for further elucidating the mechanism underlying the effects of stemazole in the treatment of neurodegenerative diseases. Full article
Show Figures

Graphical abstract

Back to TopTop