Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = stamen petalody

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 37804 KiB  
Article
Emergence of Corona Is Independent of the Four Whorls of Floral Organs in Narcissus tazetta
by Yanjun Ma, Xiaomeng Hu, Keke Fan, Na Zhang, Lili Shang, Yayun Deng, Tao Hu, Wenbo Zhang, Yan Wang and Zehui Jiang
Plants 2023, 12(7), 1458; https://doi.org/10.3390/plants12071458 - 27 Mar 2023
Viewed by 4223
Abstract
Plants of the genus Narcissus are well-known for their characteristic corona morphology, which structural origins have been a bone of contention among scholars. With “Jinzhanyintai” (JZ) and “Yulinglong” (YLL)—two major close-originated cultivars of Chinese narcissus (Narcissus tazetta L. var. chinensis Roem)—as materials, [...] Read more.
Plants of the genus Narcissus are well-known for their characteristic corona morphology, which structural origins have been a bone of contention among scholars. With “Jinzhanyintai” (JZ) and “Yulinglong” (YLL)—two major close-originated cultivars of Chinese narcissus (Narcissus tazetta L. var. chinensis Roem)—as materials, anatomic observation was made on floral organs during corona morphogenesis by dissection with hands under a stereomicroscope, paraffin section, scanning electron microscopy, and high-resolution X-ray tomography. It was uncovered that corona primordia of both cultivars appeared following the end of the differentiation of other floral organs, with differentiation sites located at the inner wall of the juncture of the base of tepals and the upper margin of the hypanthium. Affected by staminal filaments, the corona primordia of JZ experienced a three-stage differentiation process, namely blockage from the second whorl of stamens, blockage from the first whorl of stamens, and healing of corona primordia. However, the expanded spatial structure of the first whorl of petal-like stamens blocked the path of differentiation of YLL corona primordia, giving rise to slow differentiation of the corona primordia at the base of the first whorl of petal-like stamens and malformed differentiation of the corona primordia in the interval between the two whorls of petal-like stamens. Thus, a fragmented structure consisting of typical and fragmented coronas was formed. Furthermore, petal-like stamens of YLL in the lower part had a corona-like morphology. The spatio-temporal specificity of corona differentiation convincingly demonstrates that the corona is a structure independent of and different from the typical four whorls of floral organs, but also highly correlated with stamen. Full article
(This article belongs to the Special Issue Floral Biology 2.0)
Show Figures

Figure 1

13 pages, 4188 KiB  
Article
Integrated SMRT Technology with UMI RNA-Seq Reveals the Hub Genes in Stamen Petalody in Camellia oleifera
by Huie Li, Yang Hu, Chao Gao, Qiqiang Guo, Quanen Deng, Hong Nan, Lan Yang, Hongli Wei, Jie Qiu and Lu Yang
Forests 2021, 12(6), 749; https://doi.org/10.3390/f12060749 - 6 Jun 2021
Cited by 6 | Viewed by 2819
Abstract
Male sterility caused by stamen petalody is a key factor for a low fruit set rate and a low yield of Camellia oleifera but can serve as a useful genetic tool because it eliminates the need for artificial emasculation. However, its molecular regulation [...] Read more.
Male sterility caused by stamen petalody is a key factor for a low fruit set rate and a low yield of Camellia oleifera but can serve as a useful genetic tool because it eliminates the need for artificial emasculation. However, its molecular regulation mechanism still remains unclear. In this study, transcriptome was sequenced and analyzed on two types of bud materials, stamen petalody mutants and normal materials, at six stages of stamen development based on integrated single-molecule real-time (SMRT) technology with unique molecular identifiers (UMI) and RNA-seq technology to identify the hub genes responsible for stamen petalody in C. oleifera. The results show that a large number of alternative splicing events were identified in the transcriptome. A co-expression network analysis of MADSs and all the differentially expressed genes between the mutant stamens and the normal materials showed that four MADS transcription factor genes, CoSEP3.1, CoAGL6, CoSEP3.2, and CoAP3, were predicted to be the hub genes responsible for stamen petalody. Among these four, the expression patterns of CoAGL6 and CoSEP3.2 were consistently high in the mutant samples, but relatively low in the normal samples at six stages, while the patterns of CoSEP3.1 and CoAP3 were initially low in mutants and then were upregulated during development but remained relatively high in the normal materials. Furthermore, the genes with high connectivity to the hub genes showed significantly different expression patterns between the mutant stamens and the normal materials at different stages. qRT-PCR results showed a similar expression pattern of the hub genes in the RNA-seq. These results lay a solid foundation for the directive breeding of C. oleifera varieties and provide references for the genetic breeding of ornamental Camellia varieties. Full article
(This article belongs to the Special Issue Tree Genetics: Molecular and Functional Characterization of Genes)
Show Figures

Figure 1

Back to TopTop